DOXEPIN AS CORROSION INHIBITOR FOR COPPER IN 3.5 wt. % NaCl SOLUTION
DOI:
https://doi.org/10.24193/subbchem.2020.3.17Keywords:
corrosion, copper, doxepin, electrochemical impedance spectroscopy, polarization curve, SEM-EDX, quantum chemical calculationsAbstract
The effect of 3-(dibenzo[b,e]oxepin-11(6H)-ylidene)-N,N-dimethylpropane-1-amine (doxepin) on the corrosion behaviour of copper in 3.5 wt.% NaCl solution was investigated by electrochemical techniques, SEM-EDX and quantum chemical calculations. Polarization curves indicate that doxepin acts as a mixed-type inhibitor. Impedance data also prove the anticorrosive properties of doxepin, due to its adsorption on the copper surface. The inhibition efficiency of doxepin increases with increasing its concentration, reaching a maximum value of 88.8% at 5 mM. SEM-EDX analysis revealed that doxepin is able to prevent the formation of the oxides on the copper surface. Quantum chemical calculations are in agreement with the results obtained by electrochemical measurements.
References
M. Shabani-Nooshabadi; F.S. Hoseiny; Y. Jafari; Metall. Mater. Trans. A, 2015, 46, 293–299.
D.S. Chauhan; M.A. Quraishi; C. Carrière; A. Seyeux; P. Marcus; A. Singh;
J. Mol. Liq., 2019, 289, 111-113.
I. Dugdale; J.B. Cotton; Corros. Sci.,1963, 3, 69–74.
M.M. Antonijevic; M.B. Petrovic; Int. J.Electrochem. Sci., 2008, 3, 1–28.
A. Fateh; M. Aliofkhazraei; A.R. Rezvanian; Arab. J. Chem., 2020, 13, 481-544.
P. Geethamani; P.K. Kasthuri; J. Taiwan. Inst. Chem. E., 2016, 63, 490–499.
N. Vaszilcsin; V. Ordodi; A.Borza; Int. J. Pharm., 2012, 431, 241– 244.
G. Karthik; M. Sundaravadivelu; Egypt. J. Pet., 2016, 25, 481–493.
Z.Z. Tasić; M.B. Petrović Mihajlović; A.T. Simonović; M.B. Radovanović; M.M. Antonijević; Sci. Rep., 2019, 9, 1-14.
A. Samide; B. Tutunaru; A. Dobriţescu; P. Ilea, A.C. Vladu; C. Tigae; Int. J. Electrochem. Sci., 2016, 11, 5520–5534.
Z. Gong; S. Peng; X. Huang; L. Gao; Materials, 2018, 11, 1-17.
B. Tan; S. Zhang; Y. Qiang; L. Feng; C. Liao; Y. Xu; S. Chen; J. Mol. Liq., 2017, 248, 902–910.
W. Li; L. Hu; S. Zhang; B. Hou; Corros. Sci., 2011, 53, 735–745.
R. Ganapathi Sundaram; G. Vengatesh; M. Sundaravadivelu, J. Bio. Tribo. Corros., 2017, 36, 3-13.
R. Farahati; S. Morteza Mousavi-Khoshdel; A. Ghaffarinejadb; H. Behzadi; Prog. Org. Coat., 2020, 142.
G. Gece; Corros. Sci., 2011, 53, 3873–3898.
G. Kear; B.D. Barker; F.C. Walsh; Corros. Sci., 2004, 46, 109–135.
A. Shaban; E. Kálmán; J. Telegdi; Electrochim. Acta., 1998, 43, 159–163.
K.F. Khaled; M.A. Amin; Corros. Sci., 2009, 51, 2098–2106.
C. Rahal; M. Masmoudi; M. Abdelmouleh; R. Abdelhedi; Prog. Org. Coat., 2015, 78, 90–95.
Y. Qiang; S. Zhang; S. Yan; X. Zou; S. Chen; Corros. Sci., 2017, 126, 295–304.
H. Tian; W.Li; K. Cao; B. Hou; Corros. Sci., 2013, 73, 281–291.
A. Popova; M. Christov; A. Vasilev; Corros. Sci., 2011, 53, 1770–1777.
I.D. Raistrick; J.R. MacDonald; D.R. Franceschetti; The electrical analogs of physical and chemical processes. Impedance Spectroscopy Emphasizing Solid Materials and Systems, John Wiley & Sons, J.R. MacDonald (Ed.), New York, 1987, pp. 27–84.
Y. Qiang; S. Zhang; L. Guo; X. Zheng; B. Xiang; S. Chen; Corros. Sci., 2017, 119, 68–78.
R. Bostan; S. Varvara; L. Găină; L.M. Mureșan; Corros. Sci., 2012, 63, 275–286.
S. Varvara; R. Bostan; O. Bobiș; L. Găină; F. Popa; V. Mena; R.M. Souto; Appl. Surf. Sci., 2017, 426, 1100–1112.
K. Barouni; L. Bazzi; R. Saghi; M. Mihit; B. Hammouti; A. Albourine; S.E. Issami; Mat. Lett., 2008, 62, 3325–3327.
K.M. Ismail; Electrochim. Acta., 2007, 52, 7811–7819.
SPARTAN’06 Wavefunction, Inc., Irvine, CA.
D.J. Becke; Chem. Phys., 1993, 98, 5648–5652.
P.J. Stephens; J. Devlin; C.F. Chabulowski; M.J. J Frisch; Phys. Chem.,1994, 98, 11623–11627.
C. Lee; W. Yang; R.G. Parr; Phys. Rev. B., 1988, 37, 785–789.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.