DOXEPIN AS CORROSION INHIBITOR FOR COPPER IN 3.5 wt. % NaCl SOLUTION

Authors

  • Simona VARVARA Department of Cadastre, Civil Engineering and Environmental Engineering, 1 Decembrie 1918 University, Alba Iulia, Romania. Email: svarvara@uab.ro. https://orcid.org/0000-0003-2990-388X
  • Roxana BOSTAN Department of Cadastre, Civil Engineering and Environmental Engineering, 1 Decembrie 1918 University, Alba Iulia, Romania. Corresponding author: svarvara@uab.ro. https://orcid.org/0000-0003-3747-8940
  • Maria POPA Department of Cadastre, Civil Engineering and Environmental Engineering, 1 Decembrie 1918 University, Alba Iulia, Romania. Email: mpopa@uab.ro.
  • Luiza GĂINĂ Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: gluiza@chem.ubbcluj.ro. https://orcid.org/0000-0002-1328-0107
  • Florin POPA Department of Materials Science and Engineering, Technical University, Cluj-Napoca, Cluj-Napoca, Romania. Corresponding author: svarvara@uab.ro. https://orcid.org/0000-0002-8849-1902

DOI:

https://doi.org/10.24193/subbchem.2020.3.17

Keywords:

corrosion, copper, doxepin, electrochemical impedance spectroscopy, polarization curve, SEM-EDX, quantum chemical calculations

Abstract

The effect of 3-(dibenzo[b,e]oxepin-11(6H)-ylidene)-N,N-dimethylpropane-1-amine (doxepin) on the corrosion behaviour of copper in 3.5 wt.% NaCl solution was investigated by electrochemical techniques, SEM-EDX and quantum chemical calculations. Polarization curves indicate that doxepin acts as a mixed-type inhibitor. Impedance data also prove the anticorrosive properties of doxepin, due to its adsorption on the copper surface. The inhibition efficiency of doxepin increases with increasing its concentration, reaching a maximum value of 88.8% at 5 mM. SEM-EDX analysis revealed that doxepin is able to prevent the formation of the oxides on the copper surface. Quantum chemical calculations are in agreement with the results obtained by electrochemical measurements.

References

M. Shabani-Nooshabadi; F.S. Hoseiny; Y. Jafari; Metall. Mater. Trans. A, 2015, 46, 293–299.

D.S. Chauhan; M.A. Quraishi; C. Carrière; A. Seyeux; P. Marcus; A. Singh;

J. Mol. Liq., 2019, 289, 111-113.

I. Dugdale; J.B. Cotton; Corros. Sci.,1963, 3, 69–74.

M.M. Antonijevic; M.B. Petrovic; Int. J.Electrochem. Sci., 2008, 3, 1–28.

A. Fateh; M. Aliofkhazraei; A.R. Rezvanian; Arab. J. Chem., 2020, 13, 481-544.

P. Geethamani; P.K. Kasthuri; J. Taiwan. Inst. Chem. E., 2016, 63, 490–499.

N. Vaszilcsin; V. Ordodi; A.Borza; Int. J. Pharm., 2012, 431, 241– 244.

G. Karthik; M. Sundaravadivelu; Egypt. J. Pet., 2016, 25, 481–493.

Z.Z. Tasić; M.B. Petrović Mihajlović; A.T. Simonović; M.B. Radovanović; M.M. Antonijević; Sci. Rep., 2019, 9, 1-14.

A. Samide; B. Tutunaru; A. Dobriţescu; P. Ilea, A.C. Vladu; C. Tigae; Int. J. Electrochem. Sci., 2016, 11, 5520–5534.

Z. Gong; S. Peng; X. Huang; L. Gao; Materials, 2018, 11, 1-17.

B. Tan; S. Zhang; Y. Qiang; L. Feng; C. Liao; Y. Xu; S. Chen; J. Mol. Liq., 2017, 248, 902–910.

W. Li; L. Hu; S. Zhang; B. Hou; Corros. Sci., 2011, 53, 735–745.

R. Ganapathi Sundaram; G. Vengatesh; M. Sundaravadivelu, J. Bio. Tribo. Corros., 2017, 36, 3-13.

R. Farahati; S. Morteza Mousavi-Khoshdel; A. Ghaffarinejadb; H. Behzadi; Prog. Org. Coat., 2020, 142.

G. Gece; Corros. Sci., 2011, 53, 3873–3898.

G. Kear; B.D. Barker; F.C. Walsh; Corros. Sci., 2004, 46, 109–135.

A. Shaban; E. Kálmán; J. Telegdi; Electrochim. Acta., 1998, 43, 159–163.

K.F. Khaled; M.A. Amin; Corros. Sci., 2009, 51, 2098–2106.

C. Rahal; M. Masmoudi; M. Abdelmouleh; R. Abdelhedi; Prog. Org. Coat., 2015, 78, 90–95.

Y. Qiang; S. Zhang; S. Yan; X. Zou; S. Chen; Corros. Sci., 2017, 126, 295–304.

H. Tian; W.Li; K. Cao; B. Hou; Corros. Sci., 2013, 73, 281–291.

A. Popova; M. Christov; A. Vasilev; Corros. Sci., 2011, 53, 1770–1777.

I.D. Raistrick; J.R. MacDonald; D.R. Franceschetti; The electrical analogs of physical and chemical processes. Impedance Spectroscopy Emphasizing Solid Materials and Systems, John Wiley & Sons, J.R. MacDonald (Ed.), New York, 1987, pp. 27–84.

Y. Qiang; S. Zhang; L. Guo; X. Zheng; B. Xiang; S. Chen; Corros. Sci., 2017, 119, 68–78.

R. Bostan; S. Varvara; L. Găină; L.M. Mureșan; Corros. Sci., 2012, 63, 275–286.

S. Varvara; R. Bostan; O. Bobiș; L. Găină; F. Popa; V. Mena; R.M. Souto; Appl. Surf. Sci., 2017, 426, 1100–1112.

K. Barouni; L. Bazzi; R. Saghi; M. Mihit; B. Hammouti; A. Albourine; S.E. Issami; Mat. Lett., 2008, 62, 3325–3327.

K.M. Ismail; Electrochim. Acta., 2007, 52, 7811–7819.

SPARTAN’06 Wavefunction, Inc., Irvine, CA.

D.J. Becke; Chem. Phys., 1993, 98, 5648–5652.

P.J. Stephens; J. Devlin; C.F. Chabulowski; M.J. J Frisch; Phys. Chem.,1994, 98, 11623–11627.

C. Lee; W. Yang; R.G. Parr; Phys. Rev. B., 1988, 37, 785–789.

Downloads

Published

2020-09-30

How to Cite

VARVARA, S. ., BOSTAN, R. ., POPA, M. ., GĂINĂ, L., & POPA, F. . (2020). DOXEPIN AS CORROSION INHIBITOR FOR COPPER IN 3.5 wt. % NaCl SOLUTION. Studia Universitatis Babeș-Bolyai Chemia, 65(3), 215–226. https://doi.org/10.24193/subbchem.2020.3.17

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 48 49 50 51 52 53 54 55 56 57 > >> 

You may also start an advanced similarity search for this article.