COMPREHENSIVE ASSESSMENT OF ANTIOXIDANT AND CHELATING CAPACITY OF SOME BIOGENIC AMINES AND RELATED DRUGS

Authors

  • Alexandrina GUIDEA Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca, Romania. Email: guideaaxc@gmail.com
  • Augustin Cătalin MOȚ Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca, Romania. Email: augustinmot@chem.ubbcluj.ro https://orcid.org/0000-0002-1679-0487
  • Costel SÂRBU Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca, Romania. Email: csarbu@chem.ubbcluj.ro. https://orcid.org/0000-0001-9374-2078

DOI:

https://doi.org/10.24193/subbchem.2020.3.08

Keywords:

Antioxidant and chelating capacity, biogenic amines, sympatho-mimetic drugs, chemometrics

Abstract

The radical scavenging, reducing power and metal-chelating capacity of some biogenic amines and related sympathomimetic drugs were clarified using various in vitro antioxidant assays as DPPH (1, 1-diphenyl-2-picryl-hydrazyl), ABTS (2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid), SORS (superoxide anion (O2-) radical-scavenging),  nitric oxide (NO) radical scavenging, FRAP (ferric reducing antioxidant power), CUPRAC (cupric reducing antioxidant capacity) and CHROMAC (chromium reducing antioxidant capacity), including also FIC (ferrous ion-chelating capacity). The highest radical scavenging values in the case of DPPH test, for example, were obtained for methyldopa (93.14%), isoprenaline (92.92%) adrenalone (90.76%) and dopamine (90.51%). The highest reduction power, according to FRAP test, presented the same compounds: adrenalone (96.02%) methyldopa (95.97%), dopamine (94.67%) and isoprenaline (93.72%), except metaraminol (5.79%). Concerning the chelating capacity, adrenalone (66.35%), metaraminol (55.31%), metaproterenol (49.58%) and terbutaline (45.64%) showed the higher chelating capacity. The lowest value, in this case, was obtained for methyldopa (0.28%). According to the results obtained in the present study, the investigated drugs showed an effective in vitro antioxidant and radical scavenging ability and metal-chelating capacity. In addition, applying hierarchical cluster analysis (HCA), principal component analysis (PCA) and the sum of ranking differences (SRD) similarities and differences of investigated compounds and considered assays were clearly proved.

References

B. Halliwell; J.M.K. Gutteridge; Free Radicals in Biologie and Medicine, 4th ed., Oxford University Press, Oxford, 2007.

J.M.K. Gutteridge; B. Halliwell; Biochem. Biophys. Res. Commun., 2010, 393, 561-564.

D.L. Gilbert; C.A. Colton; Reactive Oxygen Species in Biological Systems: An Interdisciplinary Approach. Kluwer Academic Publishers, New York, 2002.

E. Cadenas; L. Packer; Handbook of Antioxidants. 2nd ed., Marcel Dekker, Inc., 2010.

L. Saso; O. Firuzi; Curr. Drug Targets, 2014, 15, 1-23.

H.E. Himwich; W.A. Himwich; Biogenic Amines, Elsevier, Amsterdam, 1964.

D.S. Goldstein, R. McCarty; T. Nagatsu; T. Mabeshima; Catecholamine Research: From Molecular Insights to Clinical Medicine, Kluwer Academic Publisher, New York, 2002.

S. Shioda; I. Homma; N. Kato; Transmitters and Modulators in Health and Disease, Springer, Tokyo, 2009.

M.A. Medina; J.L. Urdiales; C. Rodríguez-Caso; F.J. Ramírez; F. Sánchez-Jiménez; Crit. Rev. Biochem. Mol. Biol., 2003, 38, 23-59.

B.J. Mans; J.M.C. Ribeiro; J.F. Andersen; J. Biol. Chem., 2008, 283, 18721-18733.

T. Miura; S. Muraoka; T. Ogiso; Biochem. Pharmacol., 1998, 55, 2001-2006.

I. Gülҁin; Chem. Biol. Int., 2009, 179, 71-80.

T. Kawashima, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. B, 2010,114, 675-680.

H.Y. Zhang; Quant. Struct-Act. Relat., 2000, 19, 50-53.

H.Y. Zhang; Y.M. Sun; X. L. Wang; Chem. Eur. J., 2003, 9, 502-508.

H.Y. Zhang; Curr. Comput-Aided Drug. Des., 2005, 1, 257-273.

Y. Da-Peng; J. Hong-Fang; T. Guang-Yan; R. Wei; Z. Hong-Yu; Molecules, 2007, 12, 878-884.

F. Shahidi; Natural Antioxidants: Chemistry, Health Effects, and Applications, AOCS Press, 1997.

C.E. Thomas; Handbook of Synthetic Antioxidants, Marcel Dekker, Inc., New York, 1997.

Comprehensive Medicinal Chemistry, Release 2004.1; MDL Information Systems Inc., San Leandro, CA, 2004.

K. Robards; P.D. Prenzler; G. Tucker; P. Swatsitang; W. Glover; Food Chem., 1999, 66, 401-436.

R. Apak; E. Capanoglu; F. Shahidi; Editors, Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications, 1st ed., John Wiley & Sons Ltd., Chichester, 2018.

C. Sârbu, D. Casoni; Cent. Eur. J. Chem., 2013, 11, 679–688.

D. Casoni; C. Sârbu; Spectrochim. Acta A, 2014, 118, 343–348.

A. Guidea; C. Zăgrean-Tuza; A.C. Moț; C. Sârbu; Spectrochim. Acta A, 2020, 233, 118158.

M.S. Blois; Nature, 1958, 181, 1199–1200.

P. Re; N. Pellegrini; A. Proteggente; A. Pannala; M. Yang; C. Rice-Evans; Free Radic. Biol. Med., 1999, 26, 1231-1237.

X.L. Li; A.G. Zhou; Y. Han; Y. Carbohydr. Polym., 2006, 66, 34-42.

M.N.A. Rao; J. Pharm. Pharmacol. 1997, 49, 105-107.

I.F. Benzie; J.J. Strain; Anal. Biochem., 1996, 239, 70-76.

R. Apak; K. Güçlü; B. Demirata; et al. Molecules, 2007, 12, 1496-1547.

E. Işık; S. Şahin; C. Demir; Talanta, 2013, 111, 119-124.

T.C.P. Dinis; V.M.C. Madeira; L.M. Almeida; Arch. Biochem. Biophys., 1994, 315, 161-169.

L. Wilkinson; M. Friendly; Am. Stat., 2009, 63, 179—184.

O. Horovitz; C. Sârbu; H.F. Pop; Clasificarea raţională a elementelor chimice, Editura Dacia, Cluj-Napoca, 2000.

K. Héberger; Trac. Trends Anal. Chem., 2010, 29, 101–109.

K. Héberger; K. Kollár-Hunek; J. Chemom., 2011, 25, 151–158.

Downloads

Published

2020-09-30

How to Cite

GUIDEA, A. ., MOȚ, A. C., & SÂRBU, C. . (2020). COMPREHENSIVE ASSESSMENT OF ANTIOXIDANT AND CHELATING CAPACITY OF SOME BIOGENIC AMINES AND RELATED DRUGS. Studia Universitatis Babeș-Bolyai Chemia, 65(3), 101–117. https://doi.org/10.24193/subbchem.2020.3.08

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.