DIELECTRIC BEHAVIOR OF SLUDGE FROM WASTEWATER TREATMENT
DOI:
https://doi.org/10.24193/subbchem.2020.4.07Keywords:
wastewater, activated sludge, dielectric spectroscopy, dielectric loss, electromagnetic fields, ELFAbstract
In the present study, dielectric spectroscopy was used to assess the influence of ELF (1-200 Hz) electromagnetic fields over protein relaxation from activated sludge (approx. 99% water content), sampled from the biological tank of a domestic wastewater treatment plant. Dielectric loss (tgδ) was determined for both activated sludge samples and autoclaved samples. Experimental data analysis shows that biological samples (activated sludge) have different dielectric behavior than the sterile samples (sterilized sludge). Unlike sterile samples in which the function tgδ vs. frequency is continuous, in the activated sludge samples, this function presents two discontinuities specific to electrical resonances around the frequencies of 26.5 Hz and 50.1 Hz. This behavior indicates that under the influence of the measuring signal of 26.5 Hz and 50.1 Hz, biochemical processes are stimulated in activated sludge. Also, the significant changes in the number of charge carriers suggest that, at these frequencies, changes occur in the mechanism and kinetics of biochemical processes.
References
C. Staniloiu; C. Florescu; Rev. Chim., 2014, 65 (4), 502-505.
C.M. Dragomir Bălănică; C. Munteniță; A.G. Simionescu; I.G. Bîrsan; Rev. Chim., 2020, 71 (1), 266-272.
C. Muntenita; C.M. Dragomir Balanica; A.G. Simionescu; S. Stanciu; C.L. Popa; Rev. Chim., 2019, 70 (6), 1920-1923.
S. Gheorghe; G.G. Vasile; C. Stoica; M. Nita-Lazar; I. Lucaciu; A. Banciu; Rev. Chim., 2016, 67 (8), 1469-1473.
D. Cirtina; M.N. Mihut; Rev. Chim., 2020, 71 (2), 315-323.
C. Panaitescu; C. Jinescu; A.M. Mares; Rev. Chim., 2016, 67 (5), 925-928.
C.M. Dragomir Balanica; A.G. Simionescu; C.L. Popa; C.I. Bichescu; C. Muntenita; Rev. Chim., 2019, 70 (5), 1664-1666.
M. Mincu; M.I. Marcus; M.A. Mitiu; N.S. Raischi; Rev. Chim., 2018, 69 (12), 3553-3556.
I. Lingvay; D.I. Văireanu; K. Öllerer; C. Lingvay; Environ. Eng. Manag. J., 2012, 11 (4), 767-772.
N. Groza; A. Manescu; E. Panturu; A. Filcenco-Olteanu; R.I. Panturu; C. Jinescu; Rev. Chim., 2010, 61 (7), 680-684.
C. Bumbac; E. Manea; A. Banciu; C. Stoica; I. Ionescu; V. Badescu; M. Nita-Lazar; Rev. Chim., 2019, 70 (1), 275-277.
V.D. Gherman; P. Molnar; M. Motoc; A. Negrea; Rev. Chim., 2018, 69 (4), 806-808.
L.I. Dungan; A.E.Cioablă; V. Pode; Rev. Chim., 2020, 71 (1), 223-227.
C.G. Gheorghe; O. Pantea; V. Matei, D. Bombos; A.F. Borcea; Rev. Chim., 2011, 62 (10), 1023-1026.
E. Manea; C. Bumbac; A. Banciu; C. Stoica; M. Nita-Lazar; Rev. Chim., 2020, 71 (1), 88-92.
E.S. Biris-Dorhoi; M. Tofana; S.M. Chis; C.E. Lupu; T. Negreanu-Pirjol; Rev. Chim., 2018, 69 (5), 1089-1098.
D.E. Pascu; C. Modrogan; A.R. Miron; P. C. Albu; D.D. Clej; M. Pascu (Neagu); S. Caprarescu; Rev. Chim., 2015, 66 (12), 1950-1955.
I. Lingvay; C. Lingvay; A. Voina; Rev. Roum. Sci. Tech. El., 2008, 53 (2), 85-94.
C. Lingvay; A. Cojocaru; T. Vişan; I. Lingvay; U.P.B. Sci. Bull. Series B, 2011, 73 (4), 143-152.
I. Lingvay; M. Gabor; C. Lingvay; Rev. Chim., 2006, 57 (2), 180-183.
I. Lingvay; C. Lingvay; C. Homan; O. Ciogescu; Rev. Chim., 2006, 57 (12), 1279-1282.
I. Lingvay; A.M. Bors; D. Lingvay; L. Radermacher; V. Neagu; Rev. Chim., 2018, 69 (12), 3593-3599.
A.M. Bors; N. Butoi; A.R. Caramitu; V. Marinescu; I. Lingvay; Mat. Plast., 2017, 54 (3), 447-452.
A. Caramitu; N. Butoi; T. Rus; A.M. Luchian; S. Mitrea; Mat. Plast., 2017, 54 (2), 331-337.
I. Szatmari; M. Lingvay; L. Tudosie; A. Cojocaru; I. Lingvay; Rev. Chim., 2015, 66 (3), 304-311.
T. Rus; E. Radu; I. Lingvay; M. Lingvay; O.C. Ciobotea-Barbu; C. Campureanu; F.M. Benga; G.C. Lazar; D.I. Vaireanu; U.P.B. Sci. Bull., 2017, 79 (4), 167-180.
J. Filipič; B. Kraigher; B. Tepuš; V. Kokol; I. Mandic-Mulec; Bioresour Technol. 2012, 120, 225-232.
R.W. Hunt; A. Zavalinl; A. Bhatnagar; S. Chinnasamy; K.C. Das; Int. J. Mol. Sci., 2009, 10, 4515-4558.
B. Lewczuk; G. Redlarski; A. Żak; N. Ziółkowska; B. Przybylska-Gornowicz; M. Krawczuk; BioMed Res. Int., 2014, ID 169459
O. Hiwaki; Engineering in Medicine and Biology Society, Proceedings of the 20th Annual International Conference of the IEEE, 1998.
Y. Touitou; B. Selmaoui; Dialogues Clin Neurosci., 2012, 14 (4), 381-399.
K. Aronsson; U. Rfnner, E. Borch; Int. J. Food Microbiol., 2005, 99, 19-32.
E. Radu; D. Lipcinski; N. Tănase; I. Lingvay; Electroteh. Electron. Autom., 2015, 63 (3), 68-74.
C.M. Ferencz; P. Petrovszki; A. Dér; K. Sebők-Nagy; Z. Kóta; T. Páli; Sci. Rep., 2017, 7, 45309.
C. Stancu; M. Lingvay; I. Szatmári; I. Lingvay; The 8th Int. Symp. on ATEE, Bucharest, Romania, May 23-25, 2013, 1-4.
D. Sandu; I. Lingvay; S. Lányi; D.D. Micu; C.L. Popescu; J. Brem; L.C. Bencze; C. Paizs; Studia UBB Chemia, 2009, 54 (4), 195-201.
M. Lingvay; L. Czumbil; Electroteh. Electron. Autom., 2014, 62 (3), 84-89.
M. Lingvay; C. Stancu; I. Szatmári; I. Lingvay; Electroteh. Electron. Autom., 2013, 61 (1), 43-47.
M. Lingvay; A.R. Caramitu; A.M. Borș; I. Lingvay; Studia UBB Chemia, 2019, 64 (2), 279-288.
I.A.A. Al-Darkazly; S.M.R. Hasan; IEEE J. Transl. Eng. Health Med., 2020, 8, 1–13.
M. Blank; Electromagn. Biol. Med., 2008, 27(1), 3–23.
M. Gao; J. Zhang; H. Feng; Bioelectromagnetics, 2011, 32, 73-78.
STAS 6953-81 – Surface water and wastewater. Determination of suspended solids content, calcination loss and calcination residue.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.