DIELECTRIC BEHAVIOR OF SLUDGE FROM WASTEWATER TREATMENT

Authors

  • Csaba BARTHA Research-Development Institute for Environmental Protection Technologies and Equipment, Bistrița, România. Corresponding author: monica.jipa@icpebn.ro.
  • Alina CARAMITU National Institute for Research and Development in Electrical Engineering INCDIE ICPE-CA, Bucharest, Romania. Email: alina.caramitu@icpe-ca.ro. https://orcid.org/0000-0002-7751-9324
  • Monica JIPA Research-Development Institute for Environmental Protection Technologies and Equipment, Bistrița, România. Email: monica.jipa@icpebn.ro.
  • Daniela Maria IGNAT Research-Development Institute for Environmental Protection Technologies and Equipment, Bistrița, România. Corresponding author: monica.jipa@icpebn.ro. https://orcid.org/0000-0001-6884-1322
  • Attila TÓKOS Research-Development Institute for Environmental Protection Technologies and Equipment, Bistrița, România. Corresponding author: monica.jipa@icpebn.ro.

DOI:

https://doi.org/10.24193/subbchem.2020.4.07

Keywords:

wastewater, activated sludge, dielectric spectroscopy, dielectric loss, electromagnetic fields, ELF

Abstract

In the present study, dielectric spectroscopy was used to assess the influence of ELF (1-200 Hz) electromagnetic fields over protein relaxation from activated sludge (approx. 99% water content), sampled from the biological tank of a domestic wastewater treatment plant. Dielectric loss (tgδ) was determined for both activated sludge samples and autoclaved samples. Experimental data analysis shows that biological samples (activated sludge) have different dielectric behavior than the sterile samples (sterilized sludge). Unlike sterile samples in which the function tgδ vs. frequency is continuous, in the activated sludge samples, this function presents two discontinuities specific to electrical resonances around the frequencies of 26.5 Hz and 50.1 Hz. This behavior indicates that under the influence of the measuring signal of 26.5 Hz and 50.1 Hz, biochemical processes are stimulated in activated sludge. Also, the significant changes in the number of charge carriers suggest that, at these frequencies, changes occur in the mechanism and kinetics of biochemical processes.

References

C. Staniloiu; C. Florescu; Rev. Chim., 2014, 65 (4), 502-505.

C.M. Dragomir Bălănică; C. Munteniță; A.G. Simionescu; I.G. Bîrsan; Rev. Chim., 2020, 71 (1), 266-272.

C. Muntenita; C.M. Dragomir Balanica; A.G. Simionescu; S. Stanciu; C.L. Popa; Rev. Chim., 2019, 70 (6), 1920-1923.

S. Gheorghe; G.G. Vasile; C. Stoica; M. Nita-Lazar; I. Lucaciu; A. Banciu; Rev. Chim., 2016, 67 (8), 1469-1473.

D. Cirtina; M.N. Mihut; Rev. Chim., 2020, 71 (2), 315-323.

C. Panaitescu; C. Jinescu; A.M. Mares; Rev. Chim., 2016, 67 (5), 925-928.

C.M. Dragomir Balanica; A.G. Simionescu; C.L. Popa; C.I. Bichescu; C. Muntenita; Rev. Chim., 2019, 70 (5), 1664-1666.

M. Mincu; M.I. Marcus; M.A. Mitiu; N.S. Raischi; Rev. Chim., 2018, 69 (12), 3553-3556.

I. Lingvay; D.I. Văireanu; K. Öllerer; C. Lingvay; Environ. Eng. Manag. J., 2012, 11 (4), 767-772.

N. Groza; A. Manescu; E. Panturu; A. Filcenco-Olteanu; R.I. Panturu; C. Jinescu; Rev. Chim., 2010, 61 (7), 680-684.

C. Bumbac; E. Manea; A. Banciu; C. Stoica; I. Ionescu; V. Badescu; M. Nita-Lazar; Rev. Chim., 2019, 70 (1), 275-277.

V.D. Gherman; P. Molnar; M. Motoc; A. Negrea; Rev. Chim., 2018, 69 (4), 806-808.

L.I. Dungan; A.E.Cioablă; V. Pode; Rev. Chim., 2020, 71 (1), 223-227.

C.G. Gheorghe; O. Pantea; V. Matei, D. Bombos; A.F. Borcea; Rev. Chim., 2011, 62 (10), 1023-1026.

E. Manea; C. Bumbac; A. Banciu; C. Stoica; M. Nita-Lazar; Rev. Chim., 2020, 71 (1), 88-92.

E.S. Biris-Dorhoi; M. Tofana; S.M. Chis; C.E. Lupu; T. Negreanu-Pirjol; Rev. Chim., 2018, 69 (5), 1089-1098.

D.E. Pascu; C. Modrogan; A.R. Miron; P. C. Albu; D.D. Clej; M. Pascu (Neagu); S. Caprarescu; Rev. Chim., 2015, 66 (12), 1950-1955.

I. Lingvay; C. Lingvay; A. Voina; Rev. Roum. Sci. Tech. El., 2008, 53 (2), 85-94.

C. Lingvay; A. Cojocaru; T. Vişan; I. Lingvay; U.P.B. Sci. Bull. Series B, 2011, 73 (4), 143-152.

I. Lingvay; M. Gabor; C. Lingvay; Rev. Chim., 2006, 57 (2), 180-183.

I. Lingvay; C. Lingvay; C. Homan; O. Ciogescu; Rev. Chim., 2006, 57 (12), 1279-1282.

I. Lingvay; A.M. Bors; D. Lingvay; L. Radermacher; V. Neagu; Rev. Chim., 2018, 69 (12), 3593-3599.

A.M. Bors; N. Butoi; A.R. Caramitu; V. Marinescu; I. Lingvay; Mat. Plast., 2017, 54 (3), 447-452.

A. Caramitu; N. Butoi; T. Rus; A.M. Luchian; S. Mitrea; Mat. Plast., 2017, 54 (2), 331-337.

I. Szatmari; M. Lingvay; L. Tudosie; A. Cojocaru; I. Lingvay; Rev. Chim., 2015, 66 (3), 304-311.

T. Rus; E. Radu; I. Lingvay; M. Lingvay; O.C. Ciobotea-Barbu; C. Campureanu; F.M. Benga; G.C. Lazar; D.I. Vaireanu; U.P.B. Sci. Bull., 2017, 79 (4), 167-180.

J. Filipič; B. Kraigher; B. Tepuš; V. Kokol; I. Mandic-Mulec; Bioresour Technol. 2012, 120, 225-232.

R.W. Hunt; A. Zavalinl; A. Bhatnagar; S. Chinnasamy; K.C. Das; Int. J. Mol. Sci., 2009, 10, 4515-4558.

B. Lewczuk; G. Redlarski; A. Żak; N. Ziółkowska; B. Przybylska-Gornowicz; M. Krawczuk; BioMed Res. Int., 2014, ID 169459

O. Hiwaki; Engineering in Medicine and Biology Society, Proceedings of the 20th Annual International Conference of the IEEE, 1998.

Y. Touitou; B. Selmaoui; Dialogues Clin Neurosci., 2012, 14 (4), 381-399.

K. Aronsson; U. Rfnner, E. Borch; Int. J. Food Microbiol., 2005, 99, 19-32.

E. Radu; D. Lipcinski; N. Tănase; I. Lingvay; Electroteh. Electron. Autom., 2015, 63 (3), 68-74.

C.M. Ferencz; P. Petrovszki; A. Dér; K. Sebők-Nagy; Z. Kóta; T. Páli; Sci. Rep., 2017, 7, 45309.

C. Stancu; M. Lingvay; I. Szatmári; I. Lingvay; The 8th Int. Symp. on ATEE, Bucharest, Romania, May 23-25, 2013, 1-4.

D. Sandu; I. Lingvay; S. Lányi; D.D. Micu; C.L. Popescu; J. Brem; L.C. Bencze; C. Paizs; Studia UBB Chemia, 2009, 54 (4), 195-201.

M. Lingvay; L. Czumbil; Electroteh. Electron. Autom., 2014, 62 (3), 84-89.

M. Lingvay; C. Stancu; I. Szatmári; I. Lingvay; Electroteh. Electron. Autom., 2013, 61 (1), 43-47.

M. Lingvay; A.R. Caramitu; A.M. Borș; I. Lingvay; Studia UBB Chemia, 2019, 64 (2), 279-288.

I.A.A. Al-Darkazly; S.M.R. Hasan; IEEE J. Transl. Eng. Health Med., 2020, 8, 1–13.

M. Blank; Electromagn. Biol. Med., 2008, 27(1), 3–23.

M. Gao; J. Zhang; H. Feng; Bioelectromagnetics, 2011, 32, 73-78.

STAS 6953-81 – Surface water and wastewater. Determination of suspended solids content, calcination loss and calcination residue.

Downloads

Published

2020-12-30

How to Cite

BARTHA, C. ., CARAMITU, A. ., JIPA, M. ., IGNAT, D. M. ., & TÓKOS, A. . (2020). DIELECTRIC BEHAVIOR OF SLUDGE FROM WASTEWATER TREATMENT. Studia Universitatis Babeș-Bolyai Chemia, 65(4), 85–93. https://doi.org/10.24193/subbchem.2020.4.07

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.