CHROMIUM REMOVAL FROM POLLUTED WATER AND ITS INFLUENCE ON BIOCHEMICAL AND PHYSIOLOGICAL PARAMETERS IN ALGAL CELLS USED FOR PHYTOREMEDIATION
DOI:
https://doi.org/10.24193/subbchem.2017.3.19Keywords:
bioaccumulation, chromium, microalgae, photosynthetic pigmentsAbstract
The aim of the study is to evaluate the suitability of a local strain of the microalga Scenedesmus opoliensis in remediation of water pollution with different amounts of chromium(VI), and also to identify new biochemical and physiological markers for a more reliable indication of sustainability and efficiency of bioextraction and phytoaccumulation processes. Quantitative analysis of photosynthetic pigments reveals that the chlorophylls to carotenoids ratio is a sensitive marker of chromium toxicity and of algal metal tolerance on which the remediative capacity relies. From among the chlorophyll fluorescence parameters, the Fv/Fm ratio, related to potential quantum yield of photochemical reactions, indicates that alkaline pH of the medium (8.65-9.15) favors algal vitality as compared to acidic conditions with pH values around 5. The highest extraction rate (91%) is achieved upon exposure of algae for one week to lower chromium concentrations (5 µM) in alkaline water environment, and a longer exposure time does not increase bioaccumulation. These results may directly contribute to optimization of remediation technology for chromium-polluted water, providing new markers and a new algal strain to be introduced in wastewater treatment.
References
N. Ahalya, T. V. Ramachandra, R. D. Kanamadi, Research Journal of Chemistry and Environment, 2003, 7(4), 4544.
I. Aharchaou, M. Rosabal, F. Liu, E. Battaglia, D. A. L. Vignati, C. Fortin, Aquatic Toxicology, 2017, 182, 49.
R. J. Bartlett, Environmental Health Perspectives, 1991, 92, 17.
I. M. Berar Sur, V. Micle, S. Avram, S. Marin, V. Oros, Environmental Engineering and Management Journal, 2012, 11(8), 1389.
S. Clemens, Biochemistry, 2006, 188, 1707.
N. Das, R. Vimala, P. Karthika, Indian Journal of Biotechnology, 2008, 7, 159.
F. R. Espinoza-Quinones, N. Martin, G. Stutz, G. Tirao, S. M. Palacio, M. A. Rizzutto, A. N. Modenes, F. G. Silva, N. Szymanski, A. D. Kroumov, Water Research, 2009, 43, 4159.
L. Fodorpataki, J. Papp, Contribuții Botanice, 2002, 37, 221.
L. Fodorpataki, I. Z. Vass, Studia UBB, Seria Biologia, 2005, 50(1), 17.
L. Fodorpataki, J. Papp, Cs. Bartha, Zs, Gy. Keresztes, “Laboratory Experi-ments in Plant Physiology and Ecophysiology” (in Hungarian), Cluj University Press, Cluj-Napoca, 2010, chapter 2.
M. Fomina, G. M. Gadd, Bioresource Technology, 2014, 160, 3.
E. Fosso-Kankeu, A. F. Mulaba-Bafubiandi, Physics and Chemistry of Earth, 2014, 67, 242.
C. Garbisu, I. Alkorta, Bioresource Technology, 2001, 77, 229.
P. S. Gonzalez, M. A. Talano, A. L. W. Oller, S. G. Ibanez, M. I. Medina, E. Agostini, Update on mechanisms involved in arsenic and chromium accumu-lation, translocation and homeostasis in plants. In: D. K. Gupta, S. Chatterjee (eds.), “Heavy Metal Remediation”, Nova Science Publishers, New York, 2014, chapter 3.
S. S. Hayat, G. Khalique, M. Ifram, A. S. Wani, B. N. Tripathi, A. Ahmad, Protoplasma, 2012, 249, 599.
T. Zs. Hörcsik, R. Láposi, I. Mészáros, L. Simon, Á. Balogh, Gy. Lakatos, Acta Biologica Szegediensis, 2006, 50, 19.
H. Hu, Y. Deng, Y. Fan, P. Zhang, H. Sun, Z. Gan, H. Zhu, Y. Yao, Chemosphere, 2016, 150, 285.
S. Khan, I. Shamshad, M. Waqas, J. Nawab, L. Ming, Ecological Engineering, 2017, 102, 536.
Y. C. Lee, S. P. Chang, Bioresource Techno-logy, 2011, 102, 5297.
M. E. Losi, C. Amrheim, W. T. Frankenberger, Reviews in Environmental Contamination and Toxicology, 1994, 136, 91.
P. C. Mane, A. B. Bhosle, International Journal of Environmental Research, 2012, 6, 571.
V. Murphy, H. Hughes, P. McLoughlin, Chemosphere, 2008, 70, 1128.
L. B. Paiva, J. G. Oliveira, R. A. Azevedo, D. R. Ribeiro, M. G. Silva, A. P. Vitoria, Environmental and Experimental Botany, 2009, 65, 403.
U. N. Rai, R. D. Tripathi, N. Kumar, Chemosphere, 1992, 25, 1721.
I. Raskin, B. D. Ensley, “Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment”, John Wiley and Sons, Inc., New York, 2000.
A. Ruiz-Marin, G. Leopoldo, M. Mendoza-Espinosa, T. Stephenson, Bioresource Technology, 2010, 101, 58.
H. Seidel, C. Lser, A. Zehnsdorf, P. Hoffmann, R. Schmerold, Environmental Science and Technology, 2004, 38(5), 1582.
H. P. Singh, P. Mahajan, S. Kaur, D. R. Batish, R. K. Kohli, Environmental Chemistry Letters, 2013, 11, 229.
S. Sinha, R. Saxena, S. Singh, Chemosphere, 2015, 58, 595.
I. M. Sur, V. Micle, T. Gabor, Studia UBB Chemia, 2016, 61(3), 355.
Y. Uysal, Journal of Hazardous Materials, 2013, 263, 486.
J. Wang, C. Chen, Biotechnology Advances, 2009, 27, 195.
M. Zabochnicka-Swiatek, M. Krzywonos, Polish Journal of Environmental Studies, 2014, 23(2), 551.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.