CURCUMIN-WHEY PROTEIN SOLID DISPERSION SYSTEM WITH IMPROVED SOLUBILITY AND CANCER CELL INHIBITORY EFFECT
DOI:
https://doi.org/10.24193/subbchem.2021.3.13Keywords:
curcumin, whey protein concentrate, complexation, enhanced solubility, anticarcinogenic effect.Abstract
he solid dispersion system containing a high amount of the natural compound curcumin was prepared with whey protein concentrate by spray-drying method in 5:1 molar ratio. X-ray powder diffraction and DSC techniques show the formation of the solid dispersion system in amorphous state, and the presence of weak hydrogen bond type interactions between the components was established by FTIR analysis. SEM images show highly homogeneous donut-like spherical microparticles morphology for the system. The solubility of curcumin from the system was enhanced compared to practically insoluble raw curcumin, reaching a value of 70 µg/mL in aqueous buffer solution at pH=8 similar with intestinal environment. The synthesized material had better effects against skin melanoma cells, compared to lung adenocarcinoma cells, but in both cases the effect was promising, and through further and more complex analyses the antitumoral potential of CUC-WPC_SD could be exploited.References
B. B. Aggarwal, Curcumin: The Indian solid gold, In the Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, B. B. Aggarwal, Y. J. Surh, S Shishodia, Springer, Boston, MA, 2007, Vol 595, Chapter 1, pp. 1-75
S. J. Hewlings, D. S. Kalman, Foods, 2017, 6(10), 92; doi:10.3390/foods6100092
A. Adamczak, M. Ozarowski, T. M. Karpinski, Pharmaceuticals, 2020, 13(7), 153; doi:10.3390/ph13070153
D. C. Mathew, W.-L. Hsu, J. Funct. Foods, 2018, 40(692), 692-699
A. Askarizadeh, G. E. Barreto, N. C. Henney, M. Majeed, A. Sahebkar, Int. J. Pharm., 2020, 585, 119476; doi.org/10.1016/j.ijpharm.2020.119476 R
M. A. Tomeh, R. Hadianamrei, X. Zhao, Int. J. Mol. Sci., 2019, 20, 1033; doi:10.3390/ijms20051033
S. Mondal, S. Ghosh, S. P. Moulik, J. Photochem. Photobiol. B: Biol., 2016, 158, 212–218
M. L. A. D. Lestari, G. Indrayanto, Chapter three. Curcumin, In Profiles of Drug Substances, Excipients, and Related Methodology, First ed., H. Britain Ed., Academic Press, Elsevier Inc., 2014, Vol. 39, pp.113-204,
P. Sanphui, G. Bolla, Cryst. Growth Des., 2018, 18, 5690−5711
K. Suresh, A. Nangia, Cryst. Eng. Comm., 2018, 20, 3277-3296
Z. Liu, J. D. Smart, A. S. Pannala, J. Drug Deliv. Sci. Technol., 2020, 60, 102082; doi: 10.1016/j.jddst.2020.102082 R
K. Ahmed, Y. Li, D. J. McClements, H. Xiao, Food Chem., 2012, 132, 799–807
Y. He, H. Liu, W. Bian, Y. Liu, X. Liu, S. Ma, X. Zheng, Z. Du, K. Zhang, D. Ouyang, Pharmaceutics, 2019, 11, 442; doi:10.3390/pharmaceutics11090442
A. Celebioglu, T. Uyar, Food Chem., 2020, 317, 126397; doi:10.1016/j.foodchem.2020.126397 R
U. Kannamangalam Vijayan, N. Nitin Shah, A. Bhimrao Muley, R. S. Singhal, J. Food Eng., 2021, 292, 110258; doi:10.1016/j.jfoodeng.2020.110258 R
M. Mohammadian, M. Moghadam, M. Salami, Z. Emam-Djomeh, F. Alavi, S. Momen, A. A. Moosavi-Movahedi, J. Drug Deliv. Sci. Technol., 2020, 56, 101531; doi:10.1016/j.jddst.2020.101531 R
A. M. Chuah, B. Jacob, Z. Jie, S. Ramesh, S. Mandal, J. K. Puthan, P. Deshpande, V. V. Vaidyanathan, R. W. Gelling, G. Patel, T. Das, S. Shreeram, Food Chem., 2014, 156, 227–233
A. R. Madureira, C. I. Pereira, A. M. P. Gomes, M. E. Pintado, F. X. Malcata, Food Res. Int., 2007, 40, 1197–1211
R. A. McGregor, S. D. Poppitt, Chapter 19 - Milk Proteins and Human Health, In Milk proteins: from expression to food, 2nd ed., H. Singh, M. Boland, A. Thompson Eds., Academic Press, 2014, pp. 541-555
G. Kontopidis, C. Holt, L. Sawye, J. Dairy Sci., 2004, 87, 785–796
H. C. Liu, W. L. Chen, S. J. T. Mao, J. Dairy Sci., 2007, 90, 547–555
Y. Pan, Q.-T. Xie, J. Zhu, X.-M. Lia, R. Menga, B. Zhanga, H.-Q. Chena, Z.-Y. Jin, Food Chem., 2019, 287, 76–84
R. A. Awad, Z. M. R. Hassan, A. F. Farrag, M. M. El-Sayed, T. N. Soliman, IJFANS, 2015, 4(3), 125-131
W. Liu, X. D. Chen, Z. Cheng, C. Selomulya, J. Food Eng., 2016, 169, 189-195
G. K. Jayaprakashaa, K. N. Chidambara Murthya, B. S. Patil, Eur. J. Pharmacol., 2016, 789, 291-300.
M. Li, Y. Ma, J. Cui, LWT - Food Science and Technology, 2014, 59(1), 1-10
A. H. Sneharani, J. V. Karakkat, S. A. Singh, A. G. Appu Rao, J. Agric. Food Chem., 2010, 58, 11130–11139
M. Li, Y. Ma, M. O. Ngadi, Food Chem., 2013, 141, 1504–1511
C. D. Kanakis, P. A. Tarantilis, M. G. Polissiou, H. A. Tajmir-Riahi, J. Biomol. Struct. Dyn., 2013, 31(12), 1455–1466
M. I. Landin Neves, S. Desobrybanon, I. T. Perrone, S. Desobry, J. Petit, Powder Technol., 2019, 345, 601-607
M. Mohammadian, M. Salami, F. Alavi, S. Momen, Z. Emam-Djomeh, A. A. Moosavi-Movahedi, Food Biophys., 2019, 14, 425–436
C. Siregar, S. Martono, A. Rohman, J. Appl. Pharm. Sci., 2018, 8(08), 151-156
S. M. Beck, K. Knoerzer, J. Arcot, J. Food Eng., 2017, 214, 166-174
R. Arunkumar, C. J. Drummond, T. L. Greaves, Front. Chem., 2019, 7, 74; doi: 10.3389/fchem.2019.00074
A. Ciorîță, M. Suciu, S. Macavei, I. Kacso, I. Lung, M. L. Soran, M. Parvu, Molecules, 2020, 25(4), 819; doi:10.3390/molecules25040819
R. M. Levytskyy, Y. Z. Filyak, R. S. Stoika, Exp. Oncol., 2004, 26, 217-220
J. Li, Y. Wang, C. Yang, P. Wang, D. K. Oelschlager, Y. Zheng, D.-A. Tian, W. E. Grizzle, D. J. Buchsbaum, M. Wan, Mol. Pharmacol., 2009, 76, 81–90
S. Li, C. Fang, J. Zhang, B. Liu, Z. Wei, X. Fan, Z. Sui, Q. Tan, Nanomedicine: NBM, 2016, 12(6), 1567-1579
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.