HIGUCHI MODEL APPLIED TO IONS RELEASE FROM HYDROXYAPATITES

Authors

  • Aurora MOCANU Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Research Center of Physical Chemistry, 11 Arany Janos Str., RO-400028, Cluj-Napoca, Romania.
  • †Petre T. FRANGOPOL Deceased on December 11, 2020. Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Research Center of Physical Chemistry, 11 Arany Janos Str., RO-400028, Cluj-Napoca, Romania.
  • Reka BALINT Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Research Center of Physical Chemistry, 11 Arany Janos Str., RO-400028, Cluj-Napoca, Romania. https://orcid.org/0000-0003-2395-116X
  • Oana CADAR INCDO INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Str., RO-400293 Cluj-Napoca, Romania. https://orcid.org/0000-0002-0879-9211
  • Iulia Maria VANCEA Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Research Center of Physical Chemistry, 11 Arany Janos Str., RO-400028, Cluj-Napoca, Romania.
  • Rozalia MINTĂU Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Research Center of Physical Chemistry, 11 Arany Janos Str., RO-400028, Cluj-Napoca, Romania.
  • Ossi HOROVITZ Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Research Center of Physical Chemistry, 11 Arany Janos Str., RO-400028, Cluj-Napoca, Romania. https://orcid.org/0000-0002-3652-8558
  • Maria TOMOAIA-COTISEL Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Research Center of Physical Chemistry, 11 Arany Janos Str., RO-400028, Cluj-Napoca, Romania; Academy of Romanian Scientists, 3 Ilfov Str., RO-050044, Bucharest, Romania. *Corresponding author: mcotisel@gmail.com https://orcid.org/0000-0002-0995-3006

DOI:

https://doi.org/10.24193/subbchem.2021.3.12

Keywords:

multi-substituted hydroxyapatites; ions release; static conditions, simulated dynamic conditions; Higuchi model.

Abstract

n this study, the ions release of physiological elements from pure stoichiometric hydroxyapatite, HAP, and from multi-substituted hydroxyapatite, ms-HAPs, containing 1.5%Mg, 0.2%Zn, 0.2%Si and 5 %Sr, noted HAPc-5%Sr, and from HAPc-10%Sr, in water and in simulated body fluid, SBF, was studied by inductively coupled plasma optical emission spectrometry, ICP-OES, both in static and simulated dynamic regimes. The HAP and ms-HAP nanoparticles, NPs, were prepared by wet chemical precipitation and lyophilized powders were physicochemical characterized as presented elsewhere. The in vitro cations and anions release mechanism was investigated by applying a modified Higuchi model, which fits well the experimental results, particularly for simulated dynamic conditions. The predominant role of diffusion in the release of ions from the hydroxyapatites was confirmed. The sustained ions release from these nanomaterials recommends the investigated ms-HAPs for therapeutic applications.

References

P. T. Frangopol; A. Mocanu; V. Almasan; C. Garbo; R. Balint; G. Borodi; I. Bratu; O. Horovitz; M. Tomoaia-Cotisel; Rev. Roum. Chim., 2016, 61(4-5), 337-344.

E. Forizs; F. Goga; A. Avram; A. Mocanu; I. Petean; O. Horovitz; M. Tomoaia-Cotisel; Studia UBB Chemia; 2017, 62(4, Tom I), 173-180.

S. Rapuntean; P. T. Frangopol; I. Hodisan; Gh. Tomoaia; D. Oltean-Dan; A. Mocanu; C. Prejmerean; O. Soritau; L. Z. Racz; M. Tomoaia-Cotisel; Rev. Chim. (Bucharest), 2018, 69(12), 3535-3544.

Gh. Tomoaia; M. Tomoaia-Cotisel; L.-B. Pop; A. Pop; O. Horovitz; A. Mocanu; N. Jumate; L.-D. Bobos; Rev. Roum. Chim. 2011, 56(10-11), 1039-1046.

Gh. Tomoaia; O. Soritau; M. Tomoaia-Cotisel; L.-B. Pop; A. Pop; A. Mocanu; O. Horovitz; L.-D. Bobos; Powder Technol., 2013, 238, 99-107.

Gh. Tomoaia; M. Tomoaia-Cotisel; L.B. Pop; A. Mocanu; A. Pop; Nanopowders of hydroxyapatite and its substituted derivatives with medical applications and their fabrication procedure, Romanian Patent, OSIM, Bucharest, Romania, no. 125817 B1, BOPI, 2013, 6, 123.

F. Goga; E. Forizs; A. Avram; A. Rotaru; A. Lucian; I. Petean; A. Mocanu; M. Tomoaia-Cotisel; Rev. Chim. (Bucharest), 2017, 68(6), 1193-1200.

Gh. Tomoaia; L.B. Pop; I. Petean; M. Tomoaia-Cotisel; Mater. Plast., 2012, 49(1), 48-54.

Gh. Tomoaia; A. Mocanu; I. Vida-Simiti; N. Jumate; L.-D. Bobos; O. Soritau; M. Tomoaia-Cotisel; Mater. Sci. Eng. C, 2014, 37, 37–47.

D. Oltean-Dan; G. B. Dogaru; M. Tomoaia-Cotisel; D. Apostu; A. Mester; H. R. C. Benea; M. G. Paiusan; E. M. Jianu; A. Mocanu; R. Balint; C. O. Popa; C. Berce; G. I. Bodizs; A. M. Toader; Gh. Tomoaia; Int. J. Nanomed., 2019, 14, 5799-5816.

C. Garbo; J. Locs; M. D’Este; G. Demazeau; A. Mocanu; C. Roman; O. Horovitz; M. Tomoaia-Cotisel; Int. J. Nanomed., 2020, 15, 1037-1058.

C. Lindahl; W. Xia; J. Lausmaa; H. Engqvist; Biomed. Mater., 2012, 7, 045018; doi:10.1088/1748-6041/7/4/045018.

B. Colovic; S. Pasalic; V. Jokanovic; Ceram. Int., 2012, 38(8), 6181–6189.

M.-S. Wu; W. I. Higuchi; J. L. Fox; M. Friedman; J. Dent. Res., 1976, 55(3), 496-505.

Q. Liu; W. Guo; M. Yang; K. Wang; W. Liu; F. Wu; Adv. Polym. Technol., 2019, Article ID 9562437; https://doi.org/10.1155/2019/9562437.

M. Rohnke; S. Pfitzenreuter; B. Mogwitz; A. Henß; J. Thomas; D. Bieberstein; T. Gemming; S. K. Otto; S. Ray; M. Schumacher; M. Gelinsky; V. Alt; J. Control. Release, 2017, 262, 159–169.

A. Mocanu; G. Furtos; S. Rapuntean; O. Horovitz; C. Flore; C. Garbo; A. Danisteanu; Gh. Rapuntean; C. Prejmerean; M. Tomoaia-Cotisel; Appl. Surf. Sci., 2014, 298, 225–235.

Gh. Tomoaia; A. Mocanu; L.-D. Bobos; L.-B. Pop; O. Horovitz; M. Tomoaia-Cotisel; Studia UBB Chemia, 2015, 60(3), 265-272.

C. Garbo; M. Sindilaru; A. Carlea; Gh. Tomoaia; V. Almasan; I. Petean; A. Mocanu; O. Horovitz; M. Tomoaia-Cotisel; Particul. Sci. Technol, 2017, 35(1), 29-37.

M.-P. Ginebra; C. Canal; M. Espanol; D. Pastorino; E. B. Montufar; Adv. Drug Deliv. Rev, 2012, 64(12), 1090-1110.

M. H. Alkhraisat; C. Rueda; J. Cabrejos-Azama; J. Lucas-Aparicio; F. T. Mariño; J. Torres García-Denche; L. B. Jerez; U. Gbureck; E. L. Cabarcos; Acta Biomater., 2010, 6(4), 1522–1528.

U. Gbureck; E . Vorndran; J. E. Barralet. Acta Biomater., 2008, 4(5), 1480–1486.

E. Vidal; J. Buxadera-Palomero; C. Pierre; J. M. Manero; M.-P. Ginebra; S. Cazalbou; C. Combes; E. Rupérez; D. Rodríguez; Surf. Coat. Technol., 2019, 358; 266-275.

G. R. Mahdavinia; M. H. Karimi; M. Soltaniniya; B. Massoumi; Int. J. Biol. Macromol., 2019, 126, 443-453.

G. Vidhya; G. S. Kumar; V. S. Kattimani; E. K. Girija; Mater. Today: Proceedings, 2019, 15(2), 344-352.

C. Luo; S. Wu; J. Li; X. Li; P. Yang; G. Li; Int. J. Biol. Macromol., 2020, 155, 174-183.

A. Mocanu; O. Cadar; P. T. Frangopol; I. Petean; Gh. Tomoaia; G. A. Paltinean; C. P. Racz; O. Horovitz; M. Tomoaia-Cotisel; Roy. Soc. Open Sci., 2021, 8(1), 201785; https://doi.org/10.1098/rsos.201785.

O. Cadar; R. Balint; Gh. Tomoaia; D. Florea; I. Petean; A. Mocanu; O. Horovitz; M. Tomoaia-Cotisel; Studia UBB Chemia, 2017, 62 (4; Tom II), 269-281.

T. Higuchi; J. Pharm. Sci., 1963, 52(12), 1145–1149.

S. Dash; P. N. Murthy; L. Nath; P. Chowdhury; Acta Pol. Pharm., 2010, 67(3), 217-223.

J. Siepmann; N. A. Peppas; Int. J. Pharm., 2011, 418(1), 6-12.

Y. Fu; W. J. Kao;. Expert Opin. Drug Deliv.; 2010, 7(4), 429-444.

M. Golshan; M. Salami-Kalajahi; H. Roghani-Mamaqani; M. Mohammadi;. Polymer, 2017, 117, 287-294.

R. Gouda; H. Baishya; Z. Qing; J. Develop. Drugs, 2017, 6(2), 1000171; https://doi.org/10.4172/2329-6631.1000171.

G. Nikravan; V. Haddadi-Asl; M. Salami-Kalajahi; e-Polymers, 2019, 19(1), 203-214.

H.-G. Lee; Y.-S. Park; J.-H. Jeong; Y.-B. Kwon; D. H. Shin; J.-Y. Kim; Y.-S. Rhee; E.-S. Park; D.-W. Kim; C.-W. Park; Drug Des., Devel. Ther., 2019, 13, 2459–2474.

M. M. Leena; M. G. Antoniraj; J. A. Moses; C. Anandharamakrishnan; J. Drug Deliv. Sci. Technol., 2020, 57, 101678; https://doi.org/10.1016/j.jddst.2020.101678.

S. Bose; S. Tarafder; Acta Biomater., 2012, 8(4), 1401-1421.

M. M. Mailafiya; K. Abubakar; A. Danmaigoro; S. M. Chiroma; E. B. A. Rahim; M. A. M. Moklas; Z. A. B. Zakaria; Biomed. Res. Ther., 2019, 6(12), 3518- 3540.

S. Mondal; G. Hoang; P. Manivasagan; H. Kim; J. Oh; Ceram. Int., 2019, 45(14), 17081-17093.

E. Landi; A. Tampieri; G. Celotti; S. Sprio; M. Sandri; G. Logroscino; Acta Biomater., 2007, 3(6), 961-969.

E. Boanini; M. Gazzano; A. Bigi; Acta Biomater., 2010, 6(6), 1882-1894.

N. C. Andres; N. L. D'Elía; J. M. Ruso; A. E. Campelo; V. L. Massheimer; P. V. Messina; ACS Appl. Mater. Interfaces, 2017, 9(18), 15698-15710.

S. Chen; Y. Shi; X. Zhang; J. Ma; J. Biomed Mater Res A., 2019, 107(11), 2512-2521.

J. Beuvelot; Y. Mauras; G. Mabilleau; H. Marchand-Libouban; D. Chapparda; Dig. J. Nanomater. Biostruct., 2013, 8(1), 207-217.

S. V. Dorozhkin; J. Colloid. Interf. Sci., 1997, 191(2), 489-497.

T. Kokubo; Biomaterials, 1991, 12(2), 155-163.

Downloads

Published

2021-09-30

How to Cite

MOCANU, A., FRANGOPOL, †Petre T., BALINT, R., CADAR, O., VANCEA, I. M., MINTĂU, R., … TOMOAIA-COTISEL, M. (2021). HIGUCHI MODEL APPLIED TO IONS RELEASE FROM HYDROXYAPATITES. Studia Universitatis Babeș-Bolyai Chemia, 66(3), 195–207. https://doi.org/10.24193/subbchem.2021.3.12

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 5 > >> 

Similar Articles

<< < 22 23 24 25 26 27 28 29 > >> 

You may also start an advanced similarity search for this article.