SYNTHESIS OF Pt(II)-COMPLEXES WITH SYMMETRICAL AND UNSYMMETRICAL GLYOXIMES, THEIR PHYSICAL-CHEMICAL AND BIOLOGICAL STUDY
DOI:
https://doi.org/10.24193/subbchem.2022.4.21Keywords:
Pt(II)-complexes, -dioxime, amine ligand, thermal properties, spectroscopy, AFM, antimicrobial activityAbstract
A series of Pt-complexes of the type [Pt(DioxH)2L2], (DioxH= deprotonated diethyl-glyoxime, methyl-pentyl-glyoxime, methyl-propyl-glioxime, L=amine) were synthesized, described and characterized with thermoanalytical (TG-DTG-DTA), spectroscopical (FTIR, ESI-MS, UV-VIS and NMR), powder XRD and AFM methods. The biological activity, especially the antibacterial effect, was also studied. The complexes were tested against selected Gram-positive and Gram-negative bacteria. The thermoanalytical measurements revealed the stability of complexes until 200 °C, which then loose characteristic fragments of their ligands. The spectroscopic data are in accordance with the thermal properties of the samples, confirming their composition. The compounds exhibited antibacterial effect against the bacterial strain studied.
References
N.J. Wheate; S. Walker; G.E. Craig; R. Oun; Dalton Trans., 2010, 39, 8113-8127
W.A. Wani; S. Prashar; S. Shreaz; S.Gómez-Ruiz; Coord. Chem. Rev., 2016, 312, 67-98
Z. Wang; M. Wua; S. Gou; J. Inorg. Biochem., 2016, 157, 1-7
M. Benedetti; F. De Castro; A. Romano; D. Migoni; B. Piccinni; T. Verri; M. Lelli; N. Roveri; F.P. Fanizzi; J. Inorg. Biochem., 2016, 157, 73-79
B. Mavroidi; M. Sagnou; K. Stamatakis; M. Paravatou-Petsotas; M. Pelecanou; C. Methenitis; Inorg. Chim. Acta, 2016, 444, 63-75
L. Kelland; Nature Reviews Cancer, 2007, 7, 573-584
J. Chen; K. Li; S. Swavey; K.M. Church; Inorg. Chim. Acta, 2016, 444, 76-80
M. Gaber; H.A. El-Ghamry; S.K. Fathalla; Spectrochim. Acta, Part A, 2015, 139, 396-404
E.O. Gulumsek; E.E. Baykal; C. Kucukpolat; E. Onal; P. Balcik-Ercin; T. Yagci; V. Ahsen; A.G. Gurek; J. Coord. Chem., 2022, 75(1-2), 197-210
A.R. Timerbaev; C.G. Hartinger; S.S. Aleksenko; B.K. Keppler; Chem. Rev., 2006, 106, 2224-2248
N.T. Zanvettor; D.H. Nakahata; R.E.F. de Paiva; M.A. Ribeiro; A. Cuin; P.P. Corbi; A.L.B. Formiga; Inorg. Chim. Acta, 2016, 443, 304-315
W. Saenger; P. Orth; C. Kisker; W. Hillen; W. Hinrichs; Angew. Chem. Int. Ed. Engl., 2000, 39, 2042-2052
B.S. Speer; N.B. Shoemaker; A.A. Salyers; Clinical Microbiol. Rev., 1992, 5, 387-399
W. Guerra; I.R. Silva; E.A. Azevedo; A.R. de S. Monteiro; M. Bucciarelli-Rodriguez; E. Chartone-Souza; J.N. Silveira; A.P.S. Fontes; E.C. Pereira-Maia; J. Braz. Chem. Soc., 2006, 17, 1627-1633
C. Shiju; D. Arish; N. Bhuvanesh; S. Kumaresan; Spectrochim. Acta, Part A, 2015, 145, 213-222
F.U. Rahman; A. Ali; I. Khan; R. Guo; L. Chen; H. Wang; Z.T. Li; Y. Lin; D.W. Zhang; Polyhedron, 2015, 100, 264-270
A.M. Mansour; N.T. Abdel-Ghani; Inorg. Chimica Acta, 2015, 438, 76-84
N.T. Abdel-Ghani; A.M. Mansour; J. Mol. Struct., 2011, 991, 108-126
S.J. Sabounchei; P. Shahriary; S. Salehzadeh; Y. Gholiee; A. Chehregani; Comptes Rendus Chimie, 2015, 18, 564-572
S.J. Sabounchei; P. Shahriary; S. Salehzadeh; Y. Gholiee; D. Nematollahi; A. Chehregani; A. Amani; Z. Afsartala; Spectrochim. Acta, Part A, 2015, 135, 1019-1031
J.N. Demas; B.A. DeGraff; Coord. Chem. Rev., 2001, 211, 317-351
P. Deveci; B. Taner; Z. Kilic; A. O. Solak; U. Arslan; E. Ozcan; Polyhedron, 2011, 30, 1726-1731
M.Z. Shafikov; A.F. Suleymanova; R.J. Kutta; F. Brandl; A. Gorski; R. Czerwieniec; J. Mater. Chem. C, 2021, 9, 5808-5818
H.Y. Ku; B. Tong; Y. Chi; Y. Chi; C.C. Yeh; C.H. Chang; G.H. Lee; Dalton Transactions, 2015, 44(18), 8552-8563
P.B. Kettler; Org. Proc. Res. Develop., 2003, 7, 342-354
J.M. Gichumbi. H.B. Friedrich; J. Organomet. Chem., 2018, 866, 123-143
A.M. Mansour; J. Thermal Anal. Calorim., 2016, 123, 571-581
M.H. Soliman; A.M.M. Hindy. G.G. Mohamed; J. Thermal Anal. Calorim., 2014, 115, 987-1001
E.M. Zayed; M.A. Zayed; A.M.M. Hindy; J. Thermal Anal. Calorim., 2014, 116, 391-400
S. Arora; D. K. Aneja; M. Kumar; C. Sharma; O. Prakash; J. Thermal Anal. Calorim., 2013, 111, 17–25.
D. Giron; J. Thermal Anal. Calorimetry, 2001, 64, 37-60
C. Schmidt; N. Senfter; U. J. Griesser; J. Thermal Anal. Calorimetry, 2003, 73, 397-408
M.I. Noordin; L.Y. Chung; J. Thermal Anal. Calorimetry, 2009, 95, 891-894
B. Holló; J. Magyari; V. Živković-Radovanović; G. Vučković; Z. D. Tomić; I. M. Szilágyi; G. Pokol; K. Mészáros-Szécsényi; Polyhedron, 2014, 80, 142-150
D. Giron; C. Goldbronn; J. Thermal Anal. Calorimetry, 1995, 47, 217-251
V. Todeschini; P.R. de Oliveira; L.S. Bernardi; R.L. Pereira; C.E.M. de Campos; M.A.S. Silva; N.M. Volpato; J. Thermal Anal. Calorimetry, 2014, 115, 2295-2301
K. Nakamoto; Infrared and Raman spectra of inorganic and coordination compounds, Part B, 5th Ed. J. Wiley, New York, 1997
J.T. Watson; Introduction to Mass Spectrometry, Ed. Racon, New York, 1985
L. Mázor; Analitikai zsebkönyv, Műszaki könyvkiadó. Budapest, 1971, pp. 394
R. Barabás; N.I. Farkas; Cs. L. Nagy; O. Cadar; C. Moisa; L. Bizo; Ceramics International, 2021, 47 (6), 8584-8592
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.