EXPERIMENTAL LAB-SCALE BIOGAS PRODUCTION BY ANAEROBIC CO-DIGESTION OF AGRICULTURAL RESIDUES AND BREWERY WASTEWATER

Authors

  • Madalina IVANOVICI Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 Vasile Parvan Blvd., RO-300223, Timisoara, Romania.madalina.ivanovici@student.upt.ro
  • Adrian-Eugen CIOABLA Politehnica University of Timisoara, Faculty of Mechanical Engineering, 1 Mihai Viteazu Blvd., RO-300222, Timisoara, Romania. adrian.cioabla@upt.ro
  • Gabriela-Alina DUMITREL Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 Vasile Parvan Blvd., RO-300223, Timisoara, Romania. alina.dumitrel@upt.ro https://orcid.org/0000-0002-2097-5230
  • Ana-Maria PANA Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 Vasile Parvan Blvd., RO-300223, Timisoara, Romania. https://orcid.org/0000-0001-5424-7883
  • Laurentiu-Valentin ORDODI Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 Vasile Parvan Blvd., RO-300223, Timisoara, Romania.

DOI:

https://doi.org/10.24193/subbchem.2023.1.17

Keywords:

biogas production, agricultural residues, lab-scale experiments, N₂ purging

Abstract

As a result of environmental and economic concerns, anaerobic co-digestion process has gained increasing interest as a viable technology for both energy production and waste treatment. In this work, anaerobic co-digestion of agricultural residues (animal slurry and corn grains) and wastewater from a local brewery plant was studied using a laboratory-scale experimental installation. Multiple batch experiments (Tst1-Tst7) were carried out in which the influence of the substrate mixture ratio, the temperature and the purging of N2 of the reactor on the process was analyzed. Batch anaerobic-digestion experiments were performed at initial pH values between 7.5÷7.9 and at two temperature regimes (termophilic and mesophilic) and the substrates involved in the experiments were characterized using solid biofuels European Standard (EN 14774, EN 14775, EN 14918, EN 15297). The biogas was characterized by determining the CH4, CO2, and H2S fraction over time. The best results were obtained when nitrogen purging was used to minimize the exposure of the substrate mixture to oxygen at an operating temperature of 45°C and a volume ratio of animal slurry to wastewater of 3:1 and 150 g of corn grain. Higher operating temperature and N2 purging had a positive impact by increasing biogas production and decreasing the H2S fraction of the total produced gas.

References

E. Uçkun Kiran, K. Stamatelatou, G. Antonopoulou, G. Lyberatos; Production of biogas via anaerobic digestion. In Handbook of Biofuels Production, 2nd ed.; R. Luque, C. Sze Ki Lin, K. Wilson, J. Clark Eds.; Woodhead Publishing, 2016; Chapter 10, pp. 259-301.

G. Náthia‑Neves, M. Berni, G. Dragone, S.I. Mussatto, T. Forster‑Carneiro; IJEST, 2018, 15(4), 2033-2046.

J. N. Meegoda, B. Li, K. Patel, L. B. Wang; IJERPH, 2018, 15(10), 2224.

Y. Shen, J. L. Linville, M. Urgun-Demirtas, M. M. Mintz, S. W. Snyder; Renew. Sust. Energ. Rev., 2015, 50, 346-362.

C. Sawatdeenarunat, C. Wangnai, W. Songkasiri, P. Panichnumsin, K. Saritpongteeraka, P. Boonsawang, S. K. Khana, S. Chaiprapat; Biogas Production from Industrial Effluents, In Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, 2nd ed.; A. Pandey, C. Larroche, C.-G. Dussap, E. Gnansounou, S. K. Khanal, S. Ricke Eds.; Academic Press, 2019; Chapter 23, pp. 779-816.

E. Karlsson; Biogas through Anaerobic Digestion from Waste Streams as a Renewable Transportation Fuel - A Brief Review of Technology, European Technology and Innovation Platform https://www.etipbioenergy.eu/images/ETIP_Bioenergy_Biogas_publications_review.pdf.

M. Berni, I. Dorileo, G. Nathia, T. Forster-Carneiro, D. Lachos, B. G. M. Santos; Int. J. Chem. Eng., 2014, 1-8.

A. Eusebio, A. Neves, I. P. Marques; Apl. Sci., 2021, 11(10), 4346.

A. M. Enitan, J. Adeyemo, F. M. Swalaha, F. Bux; Environ. Model. Assess., 2015, 20, 673-685.

European Biogas Association, The role of biogas production from industrial wastewaters in reaching climate neutrality by 2050. https://www.europeanbiogas.eu/wp-content/uploads/2021/04/Paper-The-role-of-biogas-production-from-wastewater-in-reaching-climate-neutrality-by-2050.pdf.

T. Z. D. de Mes, A.J.M. Stams, J.H. Reith and G. Zeeman; Methane production by anaerobic digestion of wastewater and solid wastes. In Bio-methane & Bio-hydrogen, J.H. Reith, R.H. Wijffels and H. Barten Eds.; Smiet offset, The Hague, Netherlands, 2003; Chapter 4, pp. 58-102.

S. A. Neshat, M. Mohammadi, G. D. Najafpour, P. Lahijani; Renew. Sust. Energ. Rev., 2017, 79, 308-322.

J. Huang, Z. Yu, H. Gao, X. Yan, J. Chang, C. Wang, J. Hu, L. Zhang; PLoS One, 2017, 12(6), e0178110.

N. T. Sibiya, E. Muzenda, H. B. Tesfagiorgis; ICGTREEE'2014, 2014, 198-201.

N. Sawyerr, C. Trois, T. Workneh, V. Okudoh; IJEEP, 2019, 9(2), 105-116.

J. M. Triolo, A. J. Ward, L. Pedersen, S. G. Sommer; Characteristics of Animal Slurry as a Key Biomass for Biogas Production in Denmark, In Biomass Now – Sustainable Growth and Use, M. D. Matovic Eds.; Intech Open, 2013; Chapter 12, pp. 307-312.

I. S. Ogiehor, U. J. Ovueni; Int. J. Eng. Res., 2014, 5(1), 62-69.

M. Benali, T. Hamad, Y.Hamad; J. Sustain. Bioenergy Syst., 2019, 9(3), 91-97.

G. Ortiz, C. A. Villamar, G. Vidal; Sci. Agric., 2015, 71(6), 443-450.

H. K. Ahn, M. C. Smith, S. L. Kondrad, J. W. White; Appl. Biochem. Biotechnol., 2010, 160(4), 965-975.

D. B. Bernt, L. R. Bakke; J. Waste Manag., 2011, 4, 1-19.

V. Dubrovskis, V. Kotelenecs; Engineering for Rural Development, Proceedings, 2014, 13, 455-458.

M. Ivanovici, A. E. Cioabla, D. Lelea, F. Popescu, L. I. Dungan, L. V. Ordodi; J. Phys.: Conf. Ser., 2021, 1781, 012069.

C. Pedizzi, L. Regueiro, I. Rodriguez-Verde, J. M. Lema, M. Carballa; Bioresour. Technol., 2016, 211, 765-768.

C.-A. Villamar, D-C. Rodríguez, D. López, G. Peñuela, G. Vidal; WM&R, 2013, 31(8), 820-828.

O. El bied, M. Kessler, M. A. Terrero, T. Techtali, A. F. Cano, J. A. Acosta; Agronomy, 2021, 11, 2158.

Downloads

Published

2023-03-27

How to Cite

IVANOVICI, M., CIOABLA, A.-E., DUMITREL, G.-A., PANA, A.-M., & ORDODI, L.-V. (2023). EXPERIMENTAL LAB-SCALE BIOGAS PRODUCTION BY ANAEROBIC CO-DIGESTION OF AGRICULTURAL RESIDUES AND BREWERY WASTEWATER. Studia Universitatis Babeș-Bolyai Chemia, 68(1), 239–250. https://doi.org/10.24193/subbchem.2023.1.17

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.