On implicit φ-Hilfer fractional differential equations with the p-Laplacian operator

Authors

DOI:

https://doi.org/10.24193/subbmath.2025.4.05

Keywords:

φ-Hilfer fractional derivative, topological degree, p-Laplacian operator, Ulam-Hyers stability

Abstract

In this paper, we establish the existence and uniqueness of solutions for a new class of nonlocal boundary implicit φ-Hilfer fractional differential equations involving the p-Laplacian operator. The existence results are derived using the topological degree method for condensing maps and the Banach contraction principle. Moreover, we investigate the Ulam-Hyers and generalized Ulam-Hyers stability of our main problem. To illustrate the applicability of our theoretical results, we provide an example.

Mathematics Subject Classification (2010): 34A08, 34A09, 34D20.

Received 09 March 2025; Accepted 05 April 2025.

References

[1] Agarwal, R.P., Ntouyas, S.K., Ahmad, B., Alzahrani, A.K., Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments, Adv. Difference Equ., 1(2006), 1-15.

[2] Almalahi, M.A., Abdo, M.S., Panchal, S.K., Existence and Ulam–Hyers–Mittag-Leffler stability results of φ-Hilfer nonlocal Cauchy problem, Rend. Circ. Mat. Palermo (2)., 70(2021), 57-77.

[3] Almalahi, M.A., Abdo, M.S., Panchal, S.K., φ-Hilfer fractional functional differential equation by Picard operator method, J. Appl. Nonlinear Dyn., 9(2020), 685–702.

[4] Alsaedi, A., Alghanmi, M., Ahmad, B., Alharbi, B., Uniqueness of solutions for a φ- Hilfer fractional integral boundary value problem with the p-Laplacian operator, Demonstr. Math., 56(2023), 11pp.

[5] Bai, C., Existence and uniqueness of solutions for fractional boundary value problems with p-Laplacian operator, Adv. Difference Equ., 2018(2018), 4pp.

[6] Benhadda, W., El Mfadel, A., Kassidi, A., Existence of mild solutions for non-instantaneous impulsive φ-Caputo fractional integro-differential equations, Proyecciones- Journal of Mathematics, 43(2024).

[7] Benhadda, W., Elomari, M., Kassidi, A., El Mfadel, A., Existence of Anti-Periodic Solutions for χ-Caputo Fractional p-Laplacian Problems via Topological Degree Methods, Asia Pac. J. Math., 10(2023), 10-13.

[8] Benhadda, W., Kassidi, A., El Mfadel, A., Existence Results for an Implicit Coupled System Involving φ-Caputo and p-Laplacian Operators, Sahand Commun. Math. Anal., (2024).

[9] Deimling, K., Nonlinear Functional Analysis, Springer-Verlag, New York, 1985.

[10] Green, J.W., Valentine, F.A., On the arzela-ascoli theorem, Math. Mag., 34(1961), 199-202.

[11] Hilfer, R., Applications of Fractional Calculus in Physics, Singapore, 2000.

[12] Isaia, F., On a nonlinear integral equation without compactness, Acta Math. Univ. Comen., New Ser., 75(2006), 233-240.

[13] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and applications of fractional differential equations, Elsevier, 2006.

[14] Liu, X., Jia, M., Xiang, X., On the solvability of a fractional differential equation model involving the p-Laplacian operator, Comput. Math. Appl., 10(2012), 3267-3275.

[15] Mali, A.D., Kucche, K.D., Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Methods Appl. Sci., 15(2020), 8608-8631.

[16] Rus, I.A., Ulam stabilities of ordinary differential equations in a Banach space, Carpath. J. Math., 26(2010), 103–107.

[17] Samko, S.G., Kilbas, A.A.and Marichev, O.I., Fractional intearals and derivatives: Theory and applications, 1993.

[18] Sousa, J.V.C., Oliveira, E.C., On the φ- fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60(2018), 72–91.

[19] Subashini,R., Jothimani, K., Nisar, K.S. Ravichandran, C., New results on nonlocal functional integro-differential equations via Hilfer fractional derivative, Alex. Eng. J., 59(2020), 2891–2899.

[20] Vellappandi, M., Govindaraj V., Sousa, C., Fractional optimal reachability problems with φ-Hilfer fractional derivative, Math. Methods Appl. Sci., 45(2022), 6255–6267.

[21] Yan, H., Qiao, Y., Duan, L., Miao, J., Synchronization of fractional-order gene regulatory networks mediated by miRNA with time delays and unknown parameters, J. Franklin Inst., 359(2022), 2176-2191.

[22] Zaslavsky, G.M., Hamiltonian chaos and fractional dynamics, Oxford University Press, 2005.

Downloads

Published

2025-12-09

How to Cite

BENHADDA, W., EL MFADEL, A., KASSIDI, A., & ELOMARI, M. (2025). On implicit φ-Hilfer fractional differential equations with the p-Laplacian operator. Studia Universitatis Babeș-Bolyai Mathematica, 70(4), 597–610. https://doi.org/10.24193/subbmath.2025.4.05

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.