On a Riemann-Liouville fractional anti-periodic boundary value problem in a weighted space

Authors

  • Ahmed ALSAEDI Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia. Email: aalsaedi@hotmail.com https://orcid.org/0000-0003-3452-8922
  • Hafed A. SAEED Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, College of Applied and Educational Sciences, Ibb University, Ibb, Yemen. Email: hafed2006@gmail.com https://orcid.org/0009-0007-8306-3056
  • Bashir AHM Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Saudi Arabia. Email: bashirahmad−qau@yahoo.com https://orcid.org/0000-0001-5350-2977
  • Sotiris K. NTOUYAS Department of Mathematics, University of Ioannina, Greece. Email: sntouyas@uoi.gr https://orcid.org/0000-0002-7695-2118

DOI:

https://doi.org/10.24193/subbmath.2025.4.06

Keywords:

Riemann–Liouville fractional derivative and integral operators, anti-periodic boundary conditions, existence, fixed point, Ulam–Hyers stability

Abstract

This paper is concerned with the existence of solutions for a fractional anti-periodic boundary value problem of order α ∈ (2, 3] involving Riemann–Liouville fractional derivative and integral operators in a weighted space. The existence of solutions for the given problem is shown by means of the Leray- Schauder’s alternative, while the uniqueness of its solutions is established with the aid of the Banach’s fixed point theorem. We also discuss the Ulam–Hyers stability for the problem at hand. Examples are presented for illustration of the main results.

Mathematics Subject Classification (2010): 34A08; 34B15.

Received 2 March 2025; Accepted 25 July 2025.

References

[1] Agarwal, R. P., Ahmad, B., Alsaedi, A., Fractional-order differential equations with anti-periodic boundary conditions: A survey, Bound. Value Probl., 173(2017), 27pp.

[2] Agarwal, R. P., Luca, R., Positive solutions for a semipositone singular Riemann–Liouville fractional differential problem, Int. J. Nonlinear Sci. Numer. Simul. 20(2019), 823–831.

[3] Agarwal, R. P., Hristova, S., O’Regan, D., Exact solutions of linear Riemann–Liouville fractional differential equations with impulses, Rocky Mountain J. Math. 50(2020), 779–791.

[4] Ahmad, B., Alruwaily, Y., Alsaedi, A., Nieto, J. J., Fractional integro-differential equations with dual anti-periodic boundary conditions, Differential Integral Equations 33(2020), 181-206.

[5] Ahmad, B., Batarfi, H., Nieto, J. J., Otero-Zarraquinos, O., Shammakh, W., Projectile motion via Riemann–Liouville calculus, Adv. Difference Equ. 2015(2015), 63pp.

[6] Ahmad, B., Nieto, J. J., Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed Point Theory 13(2012), 329-336.

[7] Ahmad, B., Alghamdi, B., Agarwal, R. P., Alsaedi, A., Riemann–Liouville fractional integro-differential equations with fractional nonlocal multi-point boundary conditions, Fractals 30(2022), 11pp.

[8] Alghanmi, M., Agarwal, R. P., Ahmad, B., Existence of solutions for a coupled system of nonlinear implicit differential equations involving ϱ-fractional derivative with anti periodic boundary conditions, Qual. Theory Dyn. Syst. Paper No. 6, 23(2024), 17pp.

[9] Alsaedi, A., Nieto,J. J., Venktesh, V., Fractional electrical circuits, Adv. Mech. Eng. 7(2015), 1–7.

[10] Bai, Y., Yang, H., Ulam-Hyers stability for a class of Riemann-Liouville fractional stochastic evolution equations with delay (Chinese), J. Jilin Univ. Sci. 61(2023), 483-489.

[11] Baleanu, D., Machado, J. A. T., Luo A. C. J. (eds.), Fractional Dynamics and Control, Springer, New York, (2012).

[12] Bohner, M., Hristova, S., Lipschitz stability for impulsive Riemann-Liouville fractional differential equations, Kragujevac J. Math. 48(2024), 723-745.

[13] Castro, L. P., Silva, A. S., Ulam-Hyers stability of four-point boundary value problem for Caputo fractional differential equations with a parameter, Vladikavkaz. Mat. Zh., 24(2022), 77-90.

[14] Chen, C., Liu, L., Dong, Q., Existence and Hyers-Ulam stability for boundary value problems of multi-term Caputo fractional differential equations, Filomat, 37(2023), 9679- 9692.

[15] Dwivedi, A., Rani, G., Gautam, G. R., On generalized Caputo’s fractional order fuzzy anti periodic boundary value problem, Fract. Differ. Calc., 13(2023), 211-229.

[16] Hyers, D. H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27(1941), 222–224.

[17] Jung, S. M., Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, (2001).

[18] Granas, A., Dugundji, J., Fixed Point Theory, Springer-Verlag, New York, (2003).

[19] Guo, X., Zeng, H., Han, J. Existence of solutions for implicit fractional differential equations with p-Laplacian operator and anti-periodic boundary conditions, (Chinese), Appl. Math. J. Chinese Univ. Ser. A, 38(2023), 64-72.

[20] Guo, Y., Shu, X.-B., Li, Y., Xu, F., The existence and Hyers-Ulam stability of solution for an impulsive Riemann-Liouville fractional neutral functional stochastic differential equation with infinite delay of order 1 < β < 2, Bound. Value Probl., 59(2019), 18.

[21] Kilbas, A. A., Srivastava, H. M., Trujillo,J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier, Amsterdam, (2006).

[22] Liu, K., Wang, J. R., Zhou, Y., O’Regan, D., Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel, Chaos Solitons & Fractals, 132(2020), 11pp.

[23] Liu, Y., Boundary value problems for impulsive Bagley–Torvik models involving the Riemann–Liouville fractional derivatives, Sao Paulo J. Math. Sci., 11(2017), 148–188.

[24] Lungu, N., Ciplea, S.A., Ulam-Hyers stability of Black-Scholes equation, Stud. Univ. Babes-Bolyai Math., 61(2016), 467–472.

[25] Mainardi, F., Some basic problems in continuum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics, eds. A. Carpinteri and F. Mainardi, Springer, Berlin, (1997), 291–348.

[26] Magin, R. L., Fractional Calculus in Bioengineering, Begell House Publishers, Danbury, CT, (2006).

[27] Nonnenmacher, T. F., Metzler, R., On the Riemann–Liouville fractional calculus and some recent applications, Fractals, 3(1995), 557–566.

[28] Nyamoradi, N., Ahmad, B., Existence results for the generalized Riemann–Liouville type fractional Fisher-like equation on the half-line, Math. Methods Appl. Sci., 48(2025), 1601-1616.

[29] Rassias,T. M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.

[30] Rus, I. A., Ulam stabilities of ordinary differential equations in a Banach space, Carpath. J. Math., 26(2010), 103–107.

[31] Torvik, P. J., Bagley, R. L., On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51(1984), 294–298.

[32] Tuan, N. H., Tuan, N. H., Baleanu, D., Thach, T. N., On a backward problem for fractional diffusion equation with Riemann–Liouville derivative, Math. Methods Appl. Sci., 43(2020), 1292–1312.

[33] Tudorache, A., Luca, R., On a singular Riemann– Liouville fractional boundary value problem with parameters, Nonlinear Anal. Model. Control, 26(2021), 151–168.

[34] Ulam, S. M., A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8. Interscience Publishers, New York-London, (1960).

[35] Vazquez, L., Velasco, M. P., Usero, D., Jimenez, S., Fractional calculus as a modeling framework, Monogr. Mat. Garcia Galdean, 41(2018), 187–197.

[36] Vu, H., Rassias, J. M., Hoa, N. V., Hyers-Ulam stability for boundary value problem of fractional differential equations with κ-Caputo fractional derivative, Math. Methods Appl. Sci., 46(2023), 438-460.

[37] Xu, L., Dong, Q., Li, G., Existence and Hyers-Ulam stability for three-point boundary value problems with Riemann-Liouville fractional derivatives and integrals, Adv. Difference Equ., 458(2018), 17pp.

Downloads

Published

2025-12-09

How to Cite

ALSAEDI, A., SAEED, H. A., AHM, B., & NTOUYAS, S. K. (2025). On a Riemann-Liouville fractional anti-periodic boundary value problem in a weighted space. Studia Universitatis Babeș-Bolyai Mathematica, 70(4), 611–627. https://doi.org/10.24193/subbmath.2025.4.06

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.