Existence and Ulam stability of initial value problem for fractional perturbed functional q-difference equations
DOI:
https://doi.org/10.24193/subbmath.2024.3.02Keywords:
Initial value problem, Caputo fractional q-derivative, Burton and Kirk’s fixed point theorem, Ulam-Hyers stability, Ulam-Hyers-Rassias stabilityAbstract
In this work, we discuss the existence and uniqueness of solutions to the initial value problem for perturbed functional fractional q-difference equations involving q-derivative of the Caputo sense. By applying Banach contraction principle and Burton and Kirk’s fixed-point theorems. Further, we present the Ulam-Hyers and Ulam-Hyers-Rassias stabilities results by using direct analysis methods. Finally, we give two examples illustrating the results.
Mathematics Subject Classification (2010): 26A33, 34A12, 39A13, 47H10.
Received 15 March 2022; Accepted 12 September 2022.
References
Abbas, S., Benchohra, M., Graef, J.R, Henderson, J., Implicit Fractional Differential and Integral Equations: Existence and Stability, Gruyter, Berlin, 2018.
Abbas, S., Benchohra, M., Henderson, J., Existence and oscillation for coupled fractional q-difference systems, J. Fract. Calc. Appl., 12(2021), no. 1, 143-155.
Abbas, S., Benchohra, M., Laledj, N., Zhou, Y., Existence and Ulam Stability for implicit fractional q-difference equation, Adv. Difference Equation, 2019(2019), no. 480, 1-12.
Adams, C.R., On the linear ordinary q-difference equation, Ann. Math., 30(1928-1929), no. 1/4, 195-205.
Agarwal, R., Certain fractional q-integrals and q-derivatives, Math. Proc. Cambridge Philos. Soc., 66(1969), 365-370.
Ahmad, B., Ntouyas, S.K, Purnaras, I.K, Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations, Adv. Difference Equation, 2012(2012), no. 140, 1-15.
Ahmad, B., Ntouyas, S.K, Tariboon, J., Quantum Calculus: New Concepts, Impulsive IVPs and BVPs, Inequalities, Trends Abstr. Appl. Anal., 4, World Scientific, Hackensack, 2016.
Allouch, N., Graef, J.R. and Hamani, S., Boundary value problem for fractional q-difference equations with integral conditions in Banach space, Fractal Fract., 6(2022), no. 5, 1-11.
Allouch, N., Hamani, S., Boundary value problem for fractional q-difference equations in Banach space, Rocky Mountain J. Math., 53(2023), no. 4, 1001-1010.
Allouch, N., Hamani, S., Henderson, J., Boundary value problem for fractional q-difference equations, Nonlinear Dyn. Syst. Theory, 24(2024), no. 2, 111-122.
Al-Salam, W., Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc., 15(1966-1967), no. 2, 135-140.
Annaby, M.H., Mansour, Z.S., q-Fractional Calculus and Equations, Lect. Notes Math., 2056, Springer, Heidelberg, 2012.
Belarbi, A., Benchohra, M., Hamani, S., Ntouyas, S.K, Perturbed functional differential equation with fractional order, Commun. Appl. Anal., 11(2007), 429-440.
Burton, T.A., Kirk, C., A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr., 189(1998), 423-431.
Carmichael, R.D., The general theory of linear q-difference equations, Amer. J. Math., 34(1912), no. 2, 147-168.
Gasper, G., Rahman, M., Basic Hypergeometric Series, Encyclopedia Math. Appl., 96, Cambridge University Press, Cambridge, 1990.
Granas, A., Dugundji, J., Fixed Point Theory, Springer, Verlag New York, USA, 2003.
Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
Hyers, D.H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27(1941), no. 4, 222-224.
Jackson, F., On q-functions and a certain difference operator, Trans. R. Soc. Edinb., 46(1908), 253-281.
Jackson, F., On q-definite integrals, Quart. J. Pure Appl. Math., 41(1910), 193-203.
Jung, S.M., Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analy- sis, 204, Springer Optim. Appl, Springer, 2011.
Kac, V., Cheung, P., Quantum Calculus, Springer, Verlag New York, USA, 2002.
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematical Studies, 204, Elsevier Science, Publishers BV, Amsterdam, 2006.
Miller, K.S., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley and Sons, INC., New York, 1993.
Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999.
Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S., Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math., 1(2007), 311-323.
Rajkovic, P.M., Marinkovic, S.D, Stankovic, M.S, On q-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10(2007), no. 4, 359-373.
Rassias, Th. M., On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc., 72(1978), no. 2, 297-300.
Rus, I.A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 10(2009), 305-320.
Rus, I.A., Ulam stability of ordinary differential equations, Stud. Univ. Babeș-Bolyai Math., 54(2009), no. 4, 125-133.
Samei, M.E., Ranjbar, Gh. Kh., Hedayati, V., Existence of solution for a class of Caputo fractional q-difference inclusion on multifunctios by computational results, Kragujevac J. Math., 45(2021), no. 4, 543-570.
Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.
Taieb, A., Dahmani, Z., Ulam-Hyers-Rassias stability of fractional Lane-Emden equations, ROMAI J., 15(2019), no. 1, 133-153.
Tarasov, V.E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Nonlinear Phys. Sci., Springer Berlin Heidelberg, 2010.
Ulam, S.M., A Collection of Mathematical Problems, Interscience Publishers, Inc., New York, no. 8, 1960.
Ulam, S.M., Problems in Modern Mathematics, Chapter 6, Science Editions, John Wiley and Sons, New York, 1960.
Wang, J., Lv, L., Zhou, Y., Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., (2011), no. 63, 1-10.
Ye, H., Gao, J., Ding, Y., A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328(2007), 1075-1081.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.