Existence and stability of Langevin equations with two Hilfer-Katugampola fractional derivatives
DOI:
https://doi.org/10.24193/subbmath.2018.3.01Keywords:
Fractional calculus, fractional differential operator, fractional differential equation, Ulam stability.Abstract
In this note, we debate the existence, uniqueness and stability results for a general class of Langevin equations. We suggest the generalization via the Hilfer-Katugampola fractional derivative. We introduce some conditions for existence and uniqueness of solutions. We utilize the concept of fixed point theorems (Krasnoselskii fixed point theorem (KFPT), Banach contraction principle (BCP)). Moreover, we illustrate definitions of the Ulam type stability. These definitions generalize the fractional Ulam stability.
Mathematics Subject Classification (2010): 26A33, 49K40.
References
Abbas, M.I., Ulam stability of fractional impulsive differential equations with Riemann- Liouville integral boundary conditions, J. Contemp. Math. Anal., 50(2015), 209-219.
Ahmad, B., Nieto, J.J., Alsaedi, A., El-Shahed, M., A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal., 13(2012), 599-606.
Baghani, O., On fractional Langevin equation involving two fractional orders, Commun. Nonlinear. Sci. Numer. Simulat., doi:10.1016/j.cnsns.2016.05.023.
Chen, A., Chen, Y., Existence of solutions to nonlinear Langevin equation involving two fractional orders with boundary value conditions, Bound. Value Probl., doi:10.1155/2011/516481.
Fa, K.S., Generalized Langevin equation with fractional derivative and long-time correlation function, Phys. Rev. E, 73(2006).
Fa, K.S., Fractional Langevin equation and Riemann-Liouville fractional derivative, Eur. Phys. J. E, 24(2007), 139-143.
Hilfer, R., Applications of Fractional Calculus in Physics, World scientific, Singapore, 1999.
Ibrahim, R.W., Ulam-Hyers stability for Cauchy fractional differential equation in the unit disk, Abstr. Appl. Anal., 1(2012).
Ibrahim, R.W., Generalized Ulam-Hyers stability for fractional differential equations, Int. J. Math., 1(2012).
Ibrahim, R.W., Ulam stability for fractional differential equation in complex domain, Abstr. Appl. Anal., (2012).
Ibrahim, R.W., Stability of sequential fractional differential equation, Appl. Comput. Math., (2015), 141.
Kassim, M.D., Tatar, N.E., Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., (2014), 1-7.
Katugampola, U.N., New approach to a genaralized fractional integral, Appl. Math. Comput., 218(2011), no. 3, 860-865.
Katugampola, U.N., Existence and uniqueness results for a class of generalized fractional differential equations, Bull. Math. Anal. Appl., 1(2014).
Katugampola, U.N., New fractional integral unifying six existing fractional integrals, epint arxiv: 1612.08596, 6 pages.
Kelley, J.L., General Topology, Springer-Verlag, 1991.
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of fractional Differential Equations, Amsterdam, Elsevier, 2006.
Li, T., Zada, A., Faisal, S., Hyers-Ulam stability of nth order linear differential equations, J. Nonlinear Sci. Appl., 9(2016), 2070-2075.
Oliveira, D.S., Capelas de Oliveira, E., Hilfer-Katugampola fractional derivative, arxiv:1705.07733v1, 2017.
Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999.
Torres, C., Existence of solution for fractional Langevin equation: variational approach, Electron. J. Qual. Theory Differ. Equ., 54(2014), 1-14.
Vanterler da, J., Sousa, C., Capelas de Oliveira, E., On the ψ-Hilfer fractional derivative, arXiv: 1708.05109, 2017.
Vanterler da, J., Sousa, C., Capelas de Oliveira, E., On two new operators in fractional calculus and applications, arXiv: 1710.03712, 2017.
Vanterler da, J., Sousa, C., Capelas de Oliveira, E., On the Ulam-Hyers-Rassias satibility for nonlinear fractional differential equations using the ψ-Hilfer operator, arXiv: 1711.07339, 2017.
Vivek, D., Kanagarajan, K., Harikrishnan, S., Existence and uniqueness results for pantograph equations with generalized fractional derivative, J. Nonlinear Anal. Appl., 2017. [26] Vivek, D., Kanagarajan, K., Harikrishnan, S., Existence results for implicit differential equations with generalized fractional derivative, J. Nonlinear Anal. Appl., 2017.
Wang, J., Li, X., Ulam-Hyers stability of fractional Langevin equations, Appl. Math. Comput., 258(2015), 72.
Wang, J., Lv, L., Zhou, Y., Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 63(2011), 1-10.
Wang, J., Zhang, Y., Ulam-Hyers-Mittag-Leffler stability of fractional-order delay differential equations, Optimization, 63(2014), 1181-1190.
Yu, T., Deng, K., Luo, M., Existence and uniqueness of solutions of initial value problems for nonlinear Langevin equation involving two fractional orders, Commun. Nonlinear. Sci. Numer. Simulat., 19(2014), 1661-1668.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.