Coincidence point theorems in some generalized metric spaces

Authors

  • Alexandru-Darius FILIP Department of Statistics, Forecasts and Mathematics, Faculty of Economics and Business Administration, Babeș-Bolyai University, Cluj-Napoca, Romania. Email: darius.filip@econ.ubbcluj.ro. https://orcid.org/0000-0003-3856-9377

DOI:

https://doi.org/10.24193/subbmath.2023.4.18

Keywords:

dislocated metric space, semimetric space, singlevalued and multivalued mapping, comparison function, comparison pair, lower semi-continuity, coincidence point displacement functional, pre-weakly Picard mapping.

Abstract

Let (X, d) be a complete dislocated metric space, (Y, ρ) be a semimetric space and f, g : X Y be two mappings. Several coincidence point results are obtained for singlevalued and multivalued mappings.

Mathematics Subject Classification (2010): 54H25, 47H10, 47H04, 54C60, 47H09.

Received 17 July 2023; Accepted 09 October 2023. Published Online: 2023-12-11 Published Print: 2023-12-30

References

Berinde, V., Iterative Approximation of Fixed Points, Springer, 2007.

Berinde, V., Petrușel, A., Rus, I.A., Remarks on the terminology of the mappings in fixed point iterative methods, in metric spaces, Fixed Point Theory, 24(2023), no. 2, 525-540.

Blumenthal, L.M., Theory and Applications of Distance Geometry, Oxford, 1953.

Buică, A., Principii de coincidență și aplicații, Presa Universitară Clujeană, Cluj-Napoca, 2001.

Filip, A.-D., Fixed Point Theory in Kasahara Spaces, Casa Cărții de Știință, Cluj- Napoca, 2015.

Filip, A.-D., Conversion between generalized metric spaces and standard metric spaces with applications in fixed point theory, Carpathian J. Math., 37(2021), no. 2, 345-354.

Kirk, W.A., Sims, B., (eds.), Handbook of Metric Fixed Point Theory, Kluwer, 2001. [8] Petrușel, A., A generalization on Peetre-Rus theorem, Stud. Univ. Babeș-Bolyai Math., 35(1990), 81-85.

Petrușel, A., Rus, I.A., Șerban, M.A., Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem for a multivalued operator, J. Nonlinear Convex Anal., 15(2014), 493-513.

Rus, I.A., Around metric coincidence point theory, Stud. Univ. Babeș-Bolyai Math., 68(2023), no. 2, 449-463.

Rus, I.A., Petrușel, A., Petrușel, G., Fixed-Point Theory, Cluj University Press, Cluj-Napoca, 2008.

Downloads

Published

2023-12-11

How to Cite

FILIP, A.-D. (2023). Coincidence point theorems in some generalized metric spaces. Studia Universitatis Babeș-Bolyai Mathematica, 68(4), 925–930. https://doi.org/10.24193/subbmath.2023.4.18

Issue

Section

Articles

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.