Nonlinear elliptic equations by topological degree in Musielak-Orlicz-Sobolev spaces

Authors

  • Mustapha AIT HAMMOU Department of Mathematics, Laboratory LAMA, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco. Email: mustapha.aithammou@usmba.ac.ma. https://orcid.org/0000-0002-3930-3469
  • Badr LAHMI Department of Mathematics, Laboratory LMI, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco. Email: lahmi.badr@gmail.com.

DOI:

https://doi.org/10.24193/subbmath.2023.4.13

Keywords:

Nonlinear elliptic equation, Musielak-Orlicz-Sobolev space, topological degree.

Abstract

We prove by using the topological degree theory the existence of at least one weak solution for the nonlinear elliptic equation

Mathematics Subject Classification (2010): 35J60, 35D30, 47J05, 47H11.

Received 26 December 2020; Accepted 03 June 2021. Published Online: 2023-12-11 Published Print: 2023-12-30

References

Benkirane, A., Elmahi, A., An existence for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Anal., 36(1999), 11-24.

Benkirane, A., Sidi El Vally, M., An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin, 20(2013), 57-75.

Bendahmane, M., Wittbold, P., Renormalized solutions for nonlinear elliptic equations with variable exponents and L1 data, Nonlinear Anal., 70(2009), no. 2, 567-583.

Berkovits, J., Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differential Equations, 234(2007), 289-310.

Berkovits, J., Mustonen, V., On topological degree for mappings of monotone type, Non- linear Anal., 10(1986), 1373-1383.

Diening, L., Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., 129(2005), no. 8, 657-700.

Dong, G., Fang, X., Differential equations of divergence form in separable Musielak- Orlicz-Sobolev spaces, Bound. Value Probl., (2016), 2016:106.

Fan, X., Differential equations of divergence form in Musielak-Sobolev spaces and a sub- supersolution method, J. Math. Anal. Appl., 386(2012), 593-604.

Fan, X.L., Guan, C.X., Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications, Nonlinear Anal., 73(2010), 163-175.

Gossez, J.-P., A strongly non-linear elliptic problem in Orlicz-Sobolev spaces, In: Proc. Sympos. Pure Math., 45(1986), 455-462.

Gwiazda, P., Świerczewska-Gwiazda, A., On steady non-newtonian fluids with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal., 32(2008), no. 1, 103-113.

Gwiazda, P., Świerczewska-Gwiazda, A., On non-newtonian fluids with the property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci., 18(2008), 1073-1092.

Gwiazda, P., Świerczewska-Gwiazda, A., Wróblewska, A., Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci., 33(2010), 125-137.

Harjulehto, P., Hästö, P., Riesz potential in generalized Orlicz spaces, Forum Math., 29(2017), no. 1, 229-244.

Hudzik, H., On generalized Orlicz-Sobolev space, Funct. Approx. Comment. Math., 4(1976), 37-51.

Kim, I.S., Hong, S.J., A topological degree for operators of generalized (S+) type, Fixed Point Theory Appl., (2015), 2015:194.

Klawe, F.Z., Thermo-visco-elasticity for models with growth conditions in Orlicz spaces, Topol. Methods Nonlinear Anal., 47(2016), no. 2, 457-497.

Kováčik, O., Rákosník, J., On spaces Lp(x) and W 1,p(x), Czechoslovak Math. J., 41 (1991), 592-618.

Le, V.K., On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal., 71(2009), 3305-3321.

Liu, D., Zhao, P., Solutions for a quasilinear elliptic equation in Musielak-Sobolev spaces, Nonlinear Anal. Real World Appl., 26(2015), 315-329.

Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer-Verlag, Berlin, 1983.

Ružička, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., Vol. 1748, Springer-Verlag, Berlin, 2000.

Youssfi, A., Azroul, E., Lahmi, B., Nonlinear parabolic equations with nonstandard growth, Appl. Anal., 95(2016), no. 12, 2766-2778.

Downloads

Published

2023-12-11

How to Cite

AIT HAMMOU, M., & LAHMI, B. (2023). Nonlinear elliptic equations by topological degree in Musielak-Orlicz-Sobolev spaces. Studia Universitatis Babeș-Bolyai Mathematica, 68(4), 859–872. https://doi.org/10.24193/subbmath.2023.4.13

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.