On a singular elliptic problem with variable exponent
DOI:
https://doi.org/10.24193/subbmath.2023.1.03Keywords:
Singular elliptic problem, variable exponent, variational methods.Abstract
In the present note we study a semilinear elliptic Dirichlet problem involving a singular term with variable exponent of the following type. Existence and uniqueness results are proved when f ≥ 0.
Mathematics Subject Classification (2010): 35J20, 35J65.
Received 26 September 2022; Revised 23 January 2023. Published Online: 2023-03-20. Published Print: 2023-04-30
References
Agmon, S., The Lₚ approach to the Dirichlet problem, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13(1959), 405–448.
Bal, K., Garain, P., Mukherjee, T., On an anisotropic p-Laplace equation with variable singular exponent, Adv. Differential Equations, 26(2021), 535–562.
Boccardo, L., Orsina, L., Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations, 37(2010), 363–380.
Canino, A., Degiovanni, M., A variational approach to a class of singular semilinear elliptic equations, J. Convex Anal., 11(2004), 147–162.
Canino, A., Sciunzi, B., A uniqueness result for some singular semilinear elliptic equations, Commun. Contemp. Math., 18(2016), 9 pp.
Canino, A., Sciunzi, B., Trombetta, A., Existence and uniqueness for p-Laplace equations involving singular nonlinearities, NoDEA Nonlinear Differential Equations Appl., 23(2016), 18 pp.
Carmona, J., Martínez–Aparicio, P.J., A singular semilinear elliptic equation with a variable exponent, Adv. Nonlinear Stud., 16(2016), 491–498.
Crandall, M.G., Rabinowitz, P.H., Tartar, L., On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations, 2(1977), 193–222.
Faraci, F., Smyrlis, G., Three solutions for a singular quasilinear elliptic problem, Proc. Edinb. Math. Soc., 62(2019), 179–196.
Fulks, W., Maybee, J.S., A singular non-linear equation, Osaka Math. J., 12(1960), 1–19.
Giacomoni, J., Schindler, I., Takàč, P., Sobolev versus Hölder minimizers and global multiplicity for a singular and quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci., 6(2007), 117–158.
Godoy, T., Kaufmann, U., On Dirichlet problems with singular nonlinearity of indefinite sign, J. Math. Anal. Appl., 428(2015), 1239–1251.
Hirano, N., Saccon, C., Shioji, N., Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations, 245(2008), 1997–2037.
Loc, N.H., Schmitt, K., Applications of sub-supersolution theorems to singular nonlinear elliptic problems, Adv. Nonlinear Stud., 11(2011), 493–524.
Oliva, F., Petitta, F., On singular elliptic equations with measure sources, ESAIM Control Optim. Calc. Var., 22(2016), 289–308.
Perera, K., Silva, E.A.B., Existence and multiplicity of positive solutions for singular quasilinear problems, J. Math. Anal. Appl., 323(2006), 1238–1252.
Zhang, Z., Critical points and positive solutions of singular elliptic boundary value problems, J. Math. Anal. Appl., 302(2005), 476–483.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.