Nonlinear elliptic equations by topological degree in Musielak-Orlicz-Sobolev spaces
DOI:
https://doi.org/10.24193/subbmath.2023.4.13Keywords:
Nonlinear elliptic equation, Musielak-Orlicz-Sobolev space, topological degree.Abstract
We prove by using the topological degree theory the existence of at least one weak solution for the nonlinear elliptic equation
Mathematics Subject Classification (2010): 35J60, 35D30, 47J05, 47H11.
Received 26 December 2020; Accepted 03 June 2021. Published Online: 2023-12-11 Published Print: 2023-12-30
References
Benkirane, A., Elmahi, A., An existence for a strongly nonlinear elliptic problem in Orlicz spaces, Nonlinear Anal., 36(1999), 11-24.
Benkirane, A., Sidi El Vally, M., An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin, 20(2013), 57-75.
Bendahmane, M., Wittbold, P., Renormalized solutions for nonlinear elliptic equations with variable exponents and L1 data, Nonlinear Anal., 70(2009), no. 2, 567-583.
Berkovits, J., Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differential Equations, 234(2007), 289-310.
Berkovits, J., Mustonen, V., On topological degree for mappings of monotone type, Non- linear Anal., 10(1986), 1373-1383.
Diening, L., Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., 129(2005), no. 8, 657-700.
Dong, G., Fang, X., Differential equations of divergence form in separable Musielak- Orlicz-Sobolev spaces, Bound. Value Probl., (2016), 2016:106.
Fan, X., Differential equations of divergence form in Musielak-Sobolev spaces and a sub- supersolution method, J. Math. Anal. Appl., 386(2012), 593-604.
Fan, X.L., Guan, C.X., Uniform convexity of Musielak-Orlicz-Sobolev spaces and applications, Nonlinear Anal., 73(2010), 163-175.
Gossez, J.-P., A strongly non-linear elliptic problem in Orlicz-Sobolev spaces, In: Proc. Sympos. Pure Math., 45(1986), 455-462.
Gwiazda, P., Świerczewska-Gwiazda, A., On steady non-newtonian fluids with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal., 32(2008), no. 1, 103-113.
Gwiazda, P., Świerczewska-Gwiazda, A., On non-newtonian fluids with the property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci., 18(2008), 1073-1092.
Gwiazda, P., Świerczewska-Gwiazda, A., Wróblewska, A., Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci., 33(2010), 125-137.
Harjulehto, P., Hästö, P., Riesz potential in generalized Orlicz spaces, Forum Math., 29(2017), no. 1, 229-244.
Hudzik, H., On generalized Orlicz-Sobolev space, Funct. Approx. Comment. Math., 4(1976), 37-51.
Kim, I.S., Hong, S.J., A topological degree for operators of generalized (S+) type, Fixed Point Theory Appl., (2015), 2015:194.
Klawe, F.Z., Thermo-visco-elasticity for models with growth conditions in Orlicz spaces, Topol. Methods Nonlinear Anal., 47(2016), no. 2, 457-497.
Kováčik, O., Rákosník, J., On spaces Lp(x) and W 1,p(x), Czechoslovak Math. J., 41 (1991), 592-618.
Le, V.K., On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal., 71(2009), 3305-3321.
Liu, D., Zhao, P., Solutions for a quasilinear elliptic equation in Musielak-Sobolev spaces, Nonlinear Anal. Real World Appl., 26(2015), 315-329.
Musielak, J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math., vol. 1034, Springer-Verlag, Berlin, 1983.
Ružička, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., Vol. 1748, Springer-Verlag, Berlin, 2000.
Youssfi, A., Azroul, E., Lahmi, B., Nonlinear parabolic equations with nonstandard growth, Appl. Anal., 95(2016), no. 12, 2766-2778.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.