A convergence result for a contact problem with adhesion

Authors

  • Anca FARCAȘ Iuliu Hatieganu" University of Medicine and Pharmacy Department of Mathematics and Computer Sciences 6, Louis Pasteur Street, 400349 Cluj-Napoca, Romania e-mail: anca.farcas@umfcluj.ro https://orcid.org/0000-0002-7085-1623

Keywords:

Viscoplastic material, frictionless contact, unilateral constraint, weak solution, finite element, numerical simulations.

Abstract

We prove a convergence result for a system coupling two integral equations with a history-dependent variational inequality. More exactly, we consider the variational formulation of a quasistatic contact problem with adhesion. Then we prove the dependence of the weak solution with respect to the data. The proof is based on arguments of variational inequalities, Frechet spaces and Gronwall inequalities.

Mathematics Subject Classification (2010): 74G25, 74G30, 74M15, 74505.

References

Cangemi, L., Frottement et adherence: modele, traitement numerique et application a linterface fibre/matrice, Ph.D. Thesis, Universite de Mediterranee, Aix-Marseille II, 1997.

Chau, O., Fernandez, J.R., Shillor, M., Sofonea, M., Variational and Numerical Analysis of a Quasistatic Viscoelastic Contact Problem with Adhesion, Journal of Computational and Applied Mathematics, 159(2003), 431-465.

Chau, O., Shillor, M., Sofonea, M., Dynamic Frictionless Contact With Adhesion, ZAMP, 55(2004), 32-47.

Duvaut, G., Lions, J.L., Inequalities in Mechanics and Physics, Springer, Berlin, 1976.

Fremond, M., Equilibre des structures qui adherent a leur support, C.R. Acad. Sci. Paris Serie II, 295(1982), 913-916.

Fremond, M., Adherence des solides, J. Mecan. Theor. Appl., 6(1987), 383-407.

Ionescu, I.R., Sofonea, M., Functional and Numerical Methods in Viscoplasticity, Oxford University Press, Oxford, 1993.

Panagiotopoulos, P.D., Inequality Problems in Mechanical and Applications, Birkhauser, Basel, 1985.

Raous M., Cangemi, L., Cocu, M., A Consistent Model Coupling Adhesion, Friction and Unilateral Contact, Comput. Methods Appl. Engrg., 177(1999), 383-399.

Rojek, J., Telega, J.J., Contact Problems with Friction, Adhesion and Wear In Orthopaedic Biomechanics. I: General developments, J. Theoret. Appl. Mech., 39(2001), 655-677.

Sofonea, M., Han, W., Shillor, M., Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics 276, Chapman-Hall/ CRC Press, New-York, 2006.

Sofonea, M., Patrulescu, F., Analysis of a History-Dependent Frictionless Contact Problem, Math. Mech. Solid, 18(2013), 409-430.

Sofonea, M., Patrulescu, F., Farcas, A., A Viscoplastic Contact Problem With Normal Compliance, Unilateral Constraint and Memory Term, Appl. Math. Opt., 62(2014), no. 2, 175-198.

Sofonea, M., Patrulescu, F., A Viscoelastic Contact Problem with Adhesion and Surface Memory Effects, Math. Model. Anal., 19(2014), no. 5, 602-626.

Downloads

Published

2015-06-30

How to Cite

FARCAȘ, A. (2015). A convergence result for a contact problem with adhesion. Studia Universitatis Babeș-Bolyai Mathematica, 60(2), 329–339. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5747

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.