On Fryszkowski’s problem

Authors

DOI:

https://doi.org/10.24193/subbmath.2017.4.10

Keywords:

Fixed point of a multi-valued map, Hausdorff-Pompeiu distance, α- contractions.

Abstract

In this paper we give two partial answers to Fryszkowski’s problem which can be stated as follows: given α ∈ (0, 1), an arbitrary non-empty set Ω and a set-valued mapping F : Ω → 2Ω, find necessary and (or) sufficient conditions for the existence of a (complete) metric d on Ω having the property that F is a Nadler set-valued α-contraction with respect to d. More precisely, on the one hand, we provide necessary and sufficient conditions for the existence of a complete and bounded metric d on Ω having the property that F is a Nadler set-valued α-contraction with respect to d, in the case that α ∈ (0, 1 ) and there exists z ∈ Ω such that F (z) = {z} and, on the other hand, we give a sufficient condition for the existence of a complete metric d on Ω having the property that F is a Nadler set-valued α-contraction with respect to d, in the case that Ω is finite.

Mathematics Subject Classification (2010): 54C60, 54H25.

References

Banakh, T., Kubi´s, W., Novosad, N., Nowak, M., Strobin, F., Contractive function systems, their attractors and metrization, Topol. Methods Nonlinear Anal., 46(2015), 1029-1066.

Bessaga, C., On the converse of the Banach fixed point principle, Colloq. Math., 7(1959), 41-43.

Florinskii, A.A., On the existence of connected extensions of metric spaces and Banach’s theorem on contraction mappings, Vestnik Leningrad Univ. Math., 24(1991), 17-20.

Forte, B., Vrscay, E.R., Solving the inverse problem for function/image approximation using iterated function systems. I: Theoretical Basis, Fractals, 2(1994), 325-334.

Jachymski, J., On Reich’s question concerning fixed points of multimaps, Boll. Unione Mat. Ital., VII Ser., A 9, (1995), 453-460.

Jachymski, J., A short proof of the converse to the contraction principle and some related results, Topol. Methods Nonlinear Anal., 15(2000), 179-186.

Janoˇs, L., A converse of Banach’s contraction theorem, Proc. Amer. Math. Soc., 18(1967), 287-289.

Janoˇs, L., An application of combinatorial techniques to a topological problem, Bull. Aust. Math. Soc., 9(1973), 439-443.

Leader, S., A topological characterization of Banach contractions, Pacific J. Math., 69(1977), 461-466.

Lim, T.-C., On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl., 110(1985), 436-441.

Markin, J.T., A fixed point theorem for set valued mappings, Bull. Amer. Math. Soc., 74(1968), 639-640.

Meyers, P.R., A Converse to Banach’s contraction theorem, J. Res. Natl. Bur. Stand. - B. Math. and Math. Physics, 71B(1967), 73-76.

Miculescu, R., Mihail, A., On a question of A. Kameyama concerning self-similar metrics, J. Math. Anal. Appl., 422(2015), 265-271.

Miculescu, R., Mihail, A., A sufficient condition for a finite family of continuous functions to be transformed into ψ-contractions, Ann. Acad. Sci. Fenn., Math., 41(2016), 51-65.

Miculescu, R., Mihail, A., Remetrization results for possibly infinite self-similar systems, Topol. Methods Nonlinear Anal., 47(2016), 333-345.

Nadler Jr., S.B., Multi-valued contraction mappings, Pacific J. Math., 30(1969), 475-488. [17] Opoitsev, V.I., A converse to the principle of contracting maps, Russian Math. Surveys, 31(1976), 175-204.

Reich, S., Some fixed point problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 57(1974), 194-198.

Ricceri, B., Une propri´et´e topologique de l’ensemble des points fixes d’une contraction multivoque a` valeurs convexes, Atti Accad. Lincei Rend. Fis., 81 (1987), 283-286.

Rus, I.A., Weakly Picard mappings, Comment. Math. Univ. Carolin., 34(1993), 769-773. [21] Saint Raymond, J., Multivalued contractions, Set-Valued Anal., 2(1994), 559-571.

Tarafdar, E., Yuan, X.-Z., Set-valued topological contractions, Appl. Math. Lett., 8(1995), 79-81.

Wong, J.S.W., Generalizations of the converse of the contraction mapping principle, Canad. J. Math., 18(1966), 1095-1104.

Downloads

Published

2017-12-30

How to Cite

COMĂNECI, A. (2017). On Fryszkowski’s problem. Studia Universitatis Babeș-Bolyai Mathematica, 62(4), 537–542. https://doi.org/10.24193/subbmath.2017.4.10

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.