New midpoint and trapezoidal-type inequalities for prequasiinvex functions via generalized fractional integrals

Authors

DOI:

https://doi.org/10.24193/subbmath.2022.4.01

Keywords:

Hermite-Hadamard inequality, midpoint-type inequalities, trapezoidal-type inequalities, quasi-convex functions, prequasiinvex functions, H¨older’s inequality, power mean inequality, Katugampola fractional integrals, Riemann-Liouville fractional integrals, Hadamard fractional integrals.

Abstract

In this work, we establish some new midpoint and trapezoidal type inequalities for prequasiinvex functions via the Katugampola fractional integrals. Some of the results obtained in this paper are generalizations of some earlier results in the literature.

Mathematics Subject Classification (2010): 26A33, 26A51, 26D10, 26D15.

Received 12 January 2020; Accepted 14 June 2021.

References

Alomari, M., Darus, M., Dragomir, S.S., New inequalities of Hermite-Hadamard’s type for functions whose second derivatives absolute values are quasiconvex, Tamkang J. Math., 41(2010), 353-359.

Alomari, M., Darus, M., Dragomir, S.S., Inequalities of Hermite-Hadamard’s type for functions whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Collect., 12(Supplement) (2009), Article ID 14.

Alomari, M., Darus, M., Kirmaci, U.S., Refinements of Hadamard-type inequalities for quasiconvex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59(2010), 225-232.

Barani, A., Ghazanfari, A.G., Dragomir, S.S., Hermite-Hadamard inequality through prequasiinvex functions, RGMIA Res. Rep. Coll., 14(2011), Article 48.

Ben-Israel, A., Mond, B., What is invexity?, J. Austral. Math. Soc. Ser. E Appl. Math., 28(1986), 1-9.

Chen, H., Katugampola, U.N., Hermite-Hadamard and Hermite-Hadamard-Fej´er type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446(2017), no. 2, 1274-1291.

Delavar, R.M., Aslani, S.M., De La Sen, M., Hermite-Hadamard-Fej´er inequality related to generalized convex functions via fractional integrals, J. Math., 2018(2018), Article ID 5864091, 10 pp.

Delavar, R.M., Dragomir, S.S., Hermite-Hadamard’s mid-point type inequalities for generalized fractional integrals, RACSAM, 114(73)(2020).

Dragomir, S.S., Pearce, C.E.M., Quasi-convex functions and Hadamard’s inequality, Bull. Aust. Math. Soc., 57(1998), 377-385.

Hadamard, J., E´tude sur les propri´et´es des fonctions entiers et en particulier d’une fonction consider´ee par, Riemann, J. Math. Pures. et Appl., 58(1893), 171-215.

Hanson, M.A., Mond, B., Convex transformable programming problems and invexity, J. Inf. Opt. Sci., 8(1987), 201-207.

Ion, D.A., Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser., 34(2007), 82-87.

Iscan, I., Hermite-Hadamard’s inequalities for prequasiinvex functions via fractional integrals, Konuralp J. Math., 2(2014), no. 2, 76-84.

Katugampola, U.N., New approach to a generalized fractional integral, Appl. Math. Comput., 218(2011), no. 3, 860-865.

Katugampola, U.N., A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6(2014), no. 4, 1-15.

Kermausuor, S., Generalized Ostrowski-type inequalities involving second derivatives via the Katugampola fractional integrals, J. Nonlinear Sci. Appl., 12(2019), no. 8, 509-522.

Kermausuor, S., Simpson’s type inequalities via the Katugampola fractional integrals for s-convex functions, Kragujevac J. Math., 45(2021), no. 5, 709-720.

Kermausuor, S., Nwaeze, E.R., Some new inequalities involving the Katugampola fractional integrals for strongly η-convex functions, Tbilisi Math. J., 12(2019), no. 1, 117-130.

Kermausuor, S., Nwaeze, E.R., Tameru, A.M., New integral inequalities via the Katugampola fractional integrals for functions whose second derivatives are strongly η- convex, Mathematics, 7(2019), no. 2, 183.

Latif, M.A., Some inequalities for differentiable prequasiinvex functions with applications, Konulrap J. Math., 1(2013), no. 2, 17-29.

Latif, M.A., Dragomir, S.S., Some weighted integral inequalities for differentiable preinvex and prequasiinvex functions with applications, J. Inequal. Appl. 2013: 575(2013).

Nwaeze, E.R., Inequalities of the Hermite-Hadamard type for quasi-convex functions via the (k, s)-Riemann-Liouville fractional integrals, Fract. Differ. Calc., 8(2018), no. 2, 327-336.

Nwaeze, E.R., Kermausuor, S., Tameru, A.M., Some new k-Riemann-Liouville fractional integral inequalities associated with the strongly η-quasiconvex functions with modulus µ ≥ 0, J. Inequal. Appl., 2018:139 (2018).

Pini, R., Invexity and generalized convexity, Optimization, 22(2001), 513-525.

Podlubny, I., Fractional Differential Equations: Mathematics in Science and Engineering, Academic Press, San Diego, CA. 1999.

Ponstein, J., Seven types of convexity, SIAM Review, 9(1967), 115-119.

Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I., Integral and Series. In: Elementary Functions, 1 Nauka, Moscow, 1981.

Roberts, A.W., Varberg, D.E., Convex Functions, Academic Press, New York, 1973. [29] Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1993.

Set, E., Mumcu, I., Hermite-Hadamard type inequalities for quasi-convex functions via Katugampola fractional integrals, Int. J. Anal. Appl., 16(2018), no. 4, 605-613.

Wang, J., Zhu, C., Zhou, Y., New generalized Hermite-Hadamard type inequalities and applications to special means, J. Inequal. Appl., 2013:325(2013).

Weir, T., Mond, B., Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., 136(1988), no. 1, 29-38.

Yang, X.M., Yang, X.Q., Teo, K.L., Characterizations and applications of prequasiinvex functions, J. Optim. Theory Appl., 110(2001), no. 3, 645-668.

Downloads

Published

2022-12-02

How to Cite

KERMAUSUOR, S., & NWAEZE, E. R. (2022). New midpoint and trapezoidal-type inequalities for prequasiinvex functions via generalized fractional integrals. Studia Universitatis Babeș-Bolyai Mathematica, 67(4), 677–692. https://doi.org/10.24193/subbmath.2022.4.01

Issue

Section

Articles

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.