Ostrowski type inequalities for functions whose derivatives are strongly (α, m)-convex via k-Riemann-Liouville fractional integrals
DOI:
https://doi.org/10.24193/subbmath.2019.1.03Keywords:
Ostrowski’s inequality, strongly convex functions, strongly (α, m)- convex functions, Riemann-Liouville fractional integrals, Hölder’s inequality.Abstract
In this paper, we provide some Ostrowski type integral inequalities for functions whose derivatives in absolute value at some powers are strongly (α, m)- convex with modulus µ ≥ 0 via the k-Riemann-Liouville fractional integrals. Similar results related to (α, m)-convex functions are obtained as a particular case.
Mathematics Subject Classification (2010): 26A33, 26A51, 26D10, 26D15.
References
Alomari, M., Darus, M., Dragomir, S.S., Cerone, P., Ostrowski type inequalities for the functions whose derivative are s-convex in second sense, Appl. Math. Lett., 23(2010), no. 9, 1071-1076.
Anastassiou, G.A., Ostrowski type inequalities, Proc. Amer. Math. Soc., 123 (1995), no. 12, 3775-3781.
Anastassiou, G.A., Hooshmandasl, M.R., Ghasemi, A., Moftakharzadeh, F., Montgomery identities for fractional integrals and related inequalities, J. Inequal. Pure and Appl. Math., 10(2009), no. 4, Art. 97, 6 pp.
Angulo, H., Gim´enez, J., Moros, A., Nikodem, K., On strongly h-convex functions, Ann. Funct. Anal., 2(2011), no. 2, 85-91.
Awan, M.U., Noorb, M.A., Noorb, K.I., Safdar, F., On strongly generalized convex functions, FILOMAT, 31(2017), no. 18, 5783-5790.
Bakula, M.K., O¨ zdemir, M.E., Peˇcari´c, J., Hadamard-type inequalities for m-convex and (α, m)-convex functions, J. Inequal. Pure and Appl. Math., 9(2007), no. 4, Art. 96.
Bracamonte, M., Gim´enez, J., Vivas-Cortez, M., Hermite-Hadamard-Fej´er type inequalities for strongly (s, m)-convex functions with modulus c, in second sense, Appl. Math. Inf. Sci., 10(2016), no. 6, 2045-2053.
Dragomir, S.S., An Ostrowski type inequality for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 16(2005), 12-25.
Dragomir, S.S., A generalization of Ostrowsk integral inequality for mappings whose derivatives belong to L1[a, b] and applications in numerical integration, J. Comput. Anal. Appl., 3(2001), no. 4, 343-360.
Dragomir, S.S., A generalization of the Ostrowski integral inequality for mappings whose derivatives belong to Lp[a, b] and applications in numerical integration, J. Math. Anal. Appl., 255(2001), 605-626.
Dragomir, S.S., Wang, S., A new inequality of Ostrowski’s type in L1-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. Math., 28(1997), 239-244.
Dragomir, S.S., Wang, S., A new inequality of Ostrowski’s type in Lp-norm, Indian J. Math., 40(1998), no. 3, 299-304.
Farid, G., Usman, M., Ostrowski type k-fractional integral inequalities for MT-convex and h-convex functions, Nonlinear Funct. Anal. Appl., 22(2017), no. 3, 627-639.
He, C.Y., Wang, Y., Xi, B.Y., Qi, F., Hermite-Hadamard type inequalities for (α, m)-HA and strongly (α, m)-HA convex functions, J. Nonlinear Sci. Appl., 10(2017), 205-214.
Hua, J., Xi, B.Y., Qi, F., Some new inequalities of Simpson type for strongly s-convex function, Afr. Mat., 26(2015), 741-752.
Iscan, I., Kadakal, H., Kadakal, M., Some new integral inequalities for functions whose nth derivatives in absolute value are (α, m)-convex functions, New Trends Math. Sci., 5(2017), no. 2, 180-185.
Lara, T., Merentes, N., Quintero, R., Rosales, E., On strongly m-convex functions, Math. Aeterna, 5(2015), no. 3, 521-535.
Liu, W., Ostrowski type fractional integral inequalities for MT-convex function, Miskolc Math. Notes, 16(2015), no. 1, 249-256.
Liu, W., Some Ostrowski type inequalities via Riemann-Liouville fractional integral for h-convex function, J. Comput. Anal. Appl., 16(2014), no. 1, 998-1004.
Mihe¸san, V.G., A generalization of the convexity, Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, Romania, 1993.
Mubeen, S., Habibullah, G.M., k-Fractional integrals and applications, Int. J. Contemp. Math. Sci., 7(2012), no. 2, 89-94.
Ostrowski, A.M., U¨ber die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmitelwert, Comment. Math. Helv., 10(1938), 226-227.
O¨ zdemir, M.E., Akdemir, A.O., Ekinci, A., New Hadamard-type inequalities for functions whose derivatives are (α, m)-convex functions, Tbilisi Math. J., 7(2014), no. 2, 61-72.
O¨ zdemir, M.E., Avci, M., Kavurmaci, H., Hermite-Hadamard-type inequalities via (α, m)-convexity, Comput. Math. Appl., 61(2011), 2614-2620.
O¨ zdemir, M.E., Kavurmaci, H., Set, E., Ostrowski type inequalities for (α, m)-convex functions, Kyungpook Math. J., 50(2010), 371-378.
Polyak, B.T., Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7(1966), 72-75.
Set, E., New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63(2012), 1147-1154.
Set, E., Sardari, M., O¨ zdemir, M.E., Rooin, J., On generalizations of the Hadamard inequality for (α, m)-convex functions, RGMIA Res. Rep. Coll., 12(2009), no. 4, Art. 4. [29] Sun, W., Liu, Q., New Hermite-Hadamard type inequalities for (α, m)-convex functions and applications to special means, J. Math. Inequal., 11(2017), no. 2, 383-397.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.