A smooth approximation for non-linear second order boundary value problems using composite non-polynomial spline functions

Authors

DOI:

https://doi.org/10.24193/subbmath.2020.3.11

Keywords:

Cubic non-polynomial spline, second order boundary value problems, numerical approximation, error Analysis, convergence analysis.

Abstract

A different amalgamation of non-polynomial splines is used to find the approximate solution of linear and non-linear second order boundary value problems. Cubic spline functions are assembled with exponential and trigonometric functions to develop the different orders of numerical schemes. Free parameter k of the non-polynomial part is also used to form a new scheme, which elevates the accuracy of the solution. Numerical illustrations are given to validate the applicability and feasibility of the present methods and also depicted in the graphs.

Mathematics Subject Classification (2010): 41A15, 65D07, 65D15, 65L10.

References

Abbasbandy, S., Hashemi, M.S., Liu, C.S., The Lie-group shooting method for solving the Bratu equation, Commun. Nonlinear Sci. Numer. Simul., 16(2011), no. 11, 4238-4249.

Ahlberg, J.H., Ito, T., A collocation method for two-point boundary value problems, Math. Comp., 29(1975), no. 131, 761-776.

Ahlberg, J.H., Nilson, E.N., Walsh, J.L., The Theory of Splines and Their Applications, Academic Press, no. 38, New York/London, 1967.

Akram, G., Tariq, H., Quintic spline collocation method for fractional boundary value problems, J. Assoc. Arabic Univ. Basic Appl. Sci., 23(2017), 57-65.

Albasiny, E.L., Hoskins, W.D., Cubic spline solutions to two-point boundary value problems, Comput. J., 12(1969), 151-153.

Alayed, O.H., Ying, T.Y., Saaban, A., New fourth order quartic spline method for solving second order boundary value problems, Mathematika, 31(2015), 149-157.

Alayed, O.H., Ying, T.Y., Saaban, A., Quintic spline method for solving linear and nonlinear boundary value problems, Sains Malays., 45(2016), no. 6, 1007-1012.

Al-Said, E.A., Spline solutions for system of second order boundary value problems, Int. J. Comput. Math., 62(1996), 143-154.

Al-Said, E.A., Quadratic spline solution of two point boundary value problems, J. Nat. Geom., 12(1997), 125-134.

Al-Said, E.A., Cubic spline method for solving two-point boundary-value problems, Korean J. Comput. Appl. Math., 5(1998), 669-680.

Al-Said, E.A., Spline methods for solving system of second order boundary-value problems, Int. J. Comput. Math., 70(1999), 717-727.

Al-Said, E.A., The use of cubic splines in the numerical solution of a system of secondorder boundary value problems, Comput. Math. Appl., 42(2001), 861-869.

Al-Said, E.A., Quartic splines solutions for a system of second order boundary value problems, Appl. Math. Comput., 166(2005), 254-264.

Al-Said E.A. et al., Quartic spline method for solving second-order boundary value problems, Int. J. Phys. Sci., 6(2011), 4208-4212.

Bickley W.G., Piecewise cubic interpolation and two-point boundary problems, Comput. J., 11(1968), 206-208.

Blue, J.L., Spline function methods for nonlinear boundary value problems, Comm. ACM, 12(1969), no. 6, 327-330.

Bongsoo, J., Two-point boundary value problems by the extended Adomian decomposition method, J. Comput. Appl. Math., 219(2008), 253-262.

Caglar, H. et al., B-spline method for solving Bratu’s problem, Int. J. Comput. Math., 87(2010), no. 8, 1885-1891.

Chaurasia A., Srivastava P.C., Gupta Y., Spline based computational techniques for second, third and fourth order boundary value problems, Global J. Pure Appl. Math., 11(2015), 3203-3215.

Chawla, M.M., Subramanian R., A new fourth-order cubic spline method for second- order nonlinear two-point boundary-value problems, J. Comput. Appl. Math., 23(1988), 1-10.

Chen, F., Wong, P.J.Y., Discrete cubic spline method for second-order boundary value problems, Int. J. Comput. Math., 91(2013), 1041-1053.

Deeba, E., Khuri, S.A., Xie, S., An algorithm for solving boundary value problems, J. Comput. Phys., 159(2000), 125-138.

Fyfe, D.J., The use of cubic splines in the solution of two-point boundary value problems, Comput. J., 12(1969), 188-192.

Henrici, P., Discrete Variable Methods in Ordinary Differential Equations, John Wiley, New York, 1961.

Islam, M.S., Shirin, A., Numerical solutions of a class of second order boundary value problems on using Bernoulli polynomials, Appl. Math., 2(2011), 1059-1067.

Islam, S.U. et al., Quadratic non-polynomial spline approach to the solution of a system of second-order boundary-value problems, Appl. Math. Comput., 179(2006), 153-160.

Islam, S.U., Tirmizi I.A., Non-polynomial spline approach to the solution of a system of second-order boundary-value problems, Appl. Math. Comput., 173(2006), 1208-1218.

Jain, M.K., Aziz, T., Cubic spline solution of two-point boundary value problems with significant first derivatives, Comput. Methods Appl. Mech. Engrg., 39(1983), no. 1, 83- 91.

Justine, H., Chew, J.V.L., Sulaiman, J., Quartic non-polynomial spline solution for solving two-point boundary value problems by using conjugate gradient iterative method, J. Appl. Math. Comput. Mech., 16(2017), 41-50.

Justine, H., Sulaiman, J., Cubic non-polynomial solution for solving two-point boundary value problems using SOR iterative method, Trans. Sci. Technol., 3(2016), 469-475.

Kalyani, P., Rama Chandra Rao, P.S., Solution of boundary value problems by approaching spline techniques, Int. J. Engrg. Math., 2013(2013), 1-9.

Khalifa, A.K., Eilbeck, J.C., Collocation with quadratic and cubic splines, IMA J. Numer. Anal., 2(1982), 111-121.

Khan, A., Parametric cubic spline solution of two point boundary value problems, Appl. Math. Comput., 154(2004), 175-182.

Khan, A., Aziz, T., Parametric cubic spline approach to the solution of a system of second-order boundary-value problems, J. Optim. Theory Appl., 118(2003), 45-54.

Khuri, S.A., A new approach to Bratu’s problem, Appl. Math. Comput., 147(2004), 131- 136.

Noor, M.A., Khalifa, A.K., Cubic splines collocation methods for unilateral problems, Internat. J. Sci. Engrg., 25(1987), 1527-1530.

Raghavarao, C.V., Sanyasiraju, Y.V.S.S., Suresh, S., A note on application of cubic splines to two-point boundary value problems, Comput. Math. Appl., 27(1994), 45-48.

Ramadan, M.A., Lashien, I.F., Zahra, W.K., Polynomial and non-polynomial spline approaches to the numerical solution of second order boundary value problems, Appl. Math. Comput., 184(2007), 476-484.

Rashidinia, J., Jalilian, R., Spline solution of two point boundary value problems, Appl. Comput. Math., 9(2010), no. 2, 258-266.

Rashidinia, J., Mohammadi, R., Jalilian, R., Cubic spline method for two-point boundary value problems, IUST Internat. J. Engrg. Sci., 19(2008), 39-43.

Sakai, M., Piecewise cubic interpolation and two-point boundary value problems, Publ. RIMS, Kyoto Univ., 7(1972), 345-362.

Sakai, M., Usmani, R.A., Quadratic spline and two point boundary value problems, RIMS, Kyoto Univ., 19(1983), 7-13.

Srivastava, P.K., Kumar, M., Mohapatra, R.N., Quintic non-polynomial spline method for the solution of a second order boundary-value problem with engineering applications, Comput. Math. Appl., 62(2011), 1707-1714.

Taiwo, O.A., Exponential fitting for the solution of two-point boundary value problems with cubic spline collocation tau-method, Int. J. Comput. Math., 79(2002), 299-306.

Taiwo, O.A., Numerical solution of second order ordinary differential equations by spline collocation Tau method, Nigerian J. Math. Assoc., 6(1993), 1-16.

Usmani, R.A., Spline solutions for nonlinear two point boundary value problems, Int. J. Math. Math. Sci., 3(1980), 151-167.

Usmani, R.A., Sakai, M., A connection between quartic spline solution and numerov solution of a boundary value problem, Int. J. Comput. Math., 26(1987), 263-273.

Usmani, R.A., Warsi, S.A., Quintic spline solutions of boundary value problems, Comput. Math. Appl., 6(1980), no. 2, 197-203.

Zahra, W.K., Numerical solutions for boundary value problems for ordinary differential equations by using spline functions, M. Sc. Diss., Tanta University, 2004.

Zahra, W.K. et al., Cubic non-polynomial spline approach to the solution of a second order two-point boundary value problem, J. Amer. Sci., 6(2010), 297-302.

Downloads

Published

2020-09-15

How to Cite

CHAURASIA, A., GUPTA, Y., & SRIVASTAVA, P. C. (2020). A smooth approximation for non-linear second order boundary value problems using composite non-polynomial spline functions. Studia Universitatis Babeș-Bolyai Mathematica, 65(3), 453–470. https://doi.org/10.24193/subbmath.2020.3.11

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.