Optimal decay rates for the acoustic wave motions with boundary memory damping

Authors

  • Khalida BENOMAR Djillali Liabes University, Laboratory of Analysis and Control of PDEs, P. O. Box 89, 22000 Sidi Bel Abbes, Algeria, e-mail: benomarkhalida@yahoo.com
  • Abbes BENAISSA Djillali Liabes University, Laboratory of Analysis and Control of PDEs, P. O. Box 89, 22000 Sidi Bel Abbes, Algeria, e-mail: benaissa−abbes@yahoo.com

DOI:

https://doi.org/10.24193/subbmath.2020.3.12

Keywords:

Wave equation, acoustic boundary conditions, boundary memory.

Abstract

A linear wave equation with acoustic boundary conditions (ABC) on a portion of the boundary and Dirichlet conditions on the rest of the boundary is considered. The (ABC) contain a memory damping with respect to the normal displacement of the boundary point. In this paper, we establish polynomial energy decay rates for the wave equation by using resolvent estimates.

Mathematics Subject Classification (2010): 93D15, 35B40, 47D03, 74D05.

References

Achouri, Z., Amroun, N., Benaissa, A., The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type, Math. Methods Appl. Sci., 40(2017) no. 11, 3887-3854.

Arendt, W., Batty, C.J.K., Tauberian theorems and stability of one-parameter semigroups, Trans. Am. Math. Soc., 306(1988) no. 2, 837-852.

Beale, J.T., Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 25(1976), no. 9, 895-917.

Beale, J.T., Acoustic scattering from locally reacting surfaces, Indiana Univ. Math. J., 26(1977), no. 2, 199-222.

Beale, J.T., Rosencrans, S.I., Acoustic boundary conditions, Bull. Amer. Math. Soc., 80(1974), 1276-1278.

Borichev, A., Tomilov, Y., Optimal polynomial decay of functions and operator semigroups, Math. Ann., 347(2010), no. 2, 455-478.

Boukhatem, Y., Benabderrahmane, B., Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions, Nonlinear Anal., 97(2014), 191-209.

Br´ezis, H., Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, Notas de Matema`tica (50), Universidade Federal do Rio de Janeiro and University of Rochester, North-Holland, Amsterdam, 1973.

Choi, U.J., Maccamy, R.C., Fractional order Volterra equations with applications to elasticity, J. Math. Anal. Appl., 139(1989), no. 2, 448-464.

Huang, F., Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces, Ann. Differential Equations, 1(1985), no. 1, 43-56.

Jiao, Z., Xiao, T.J., Acoustic wave motions stabilized by boundary memory damping, Appl. Math. Lett., 57(2016), 82-89.

Jiao, Z., Xu, Y., Acoustic wave motions stabilized by boundary memory damping II. Polynomial stability, Appl. Math. Lett., 85(2018), 35-40.

Lyubich, Y.I., Ph´ong, V.Q., Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88(1988), no. 1, 37-42.

Mbodje, B., Wave energy decay under fractional derivative controls, IIMA J. Math. Control Inform., 23(2006), no. 2, 237-257.

Morse, P.M., Ingard, K.U., Theoretical Acoustics, New York, McGraw-Hill, 1968.

Park, J.Y., Park, S.H., Decay rate estimates for wave equations of memory type with acoustic boundary conditions, Nonlinear Anal., 74(2011), no. 3, 993-998.

Pru¨ss, J., On the spectrum of C0-semigroups, Trans. Amer. Math. Soc., 284(1984), no. 2, 847-857.

Downloads

Published

2020-09-15

How to Cite

BENOMAR, K., & BENAISSA, A. (2020). Optimal decay rates for the acoustic wave motions with boundary memory damping. Studia Universitatis Babeș-Bolyai Mathematica, 65(3), 471–482. https://doi.org/10.24193/subbmath.2020.3.12

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.