Bernstein polynomials iterative method for weakly singular and fractional Fredholm integral equations
DOI:
https://doi.org/10.24193/subbmath.2024.3.13Keywords:
Weakly singular and fractional Fredholm integral equations, iterative numerical method, piecewise Bernstein polynomials spline, order of convergenceAbstract
A novel iterative method based on Picard iterations and Berstein polynomials is proposed for solving weakly singular and fractional Fredholm integral equations. On a uniform mesh, at each iterative step a Bernstein type spline is constructed by using the values computed at the previous step. The error estimates are obtained in terms of the Lipschitz constants and the convergence of the method is proved. Some numerical examples are presented in order to illustrate the accuracy of this iterative method.
Mathematics Subject Classification (2010): 65R20.
Received 17 September 2022; Accepted 06 February 2023
References
Agarwal, R.P., Benchohra, M., Hamani, S., A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math., 109(2010), 973-1033.
Allouch, C., Sablonnière, P., Sbibih, D., Tahrichi, M., Product integration methods based on discrete spline quasi-interpolants and application to weakly singular integral equations, J. Comput. Appl. Math., 233(2010), 2855-2866.
Amin, R., Alrabaiah, H., Mahariq, I., Zeb, A., Theoretical and computational results for mixed type Volterra-Fredholm fractional integral equations, Fractals, 30(2022), no. 1, 2240035.
András, S., Weakly singular Volterra and Fredholm-Volterra integral equations, Studia Univ. Babeș-Bolyai Math., 48(2003), no. 3, 147-155.
Atkinson, K.E., The numerical solution of an Abel integral equation by a product trapezoidal method, SIAM J. Numer. Anal., 11(1974), no. 1, 97–101.
Atkinson, K.E., An Introduction to Numerical Analysis, 2nd ed., John Wiley & Sons, New York, 1989.
Bagley, R.L., Calico, R.A., Fractional order state equations for the control of viscoelastically damped structures, J. Guid. Contr. Dynam., 14(1991), 304-311.
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J., Fractional Calculus: Models and Numerical Methods, in: Series on Complexity, Nonlinearity and Chaos, vol. 3, World Scientific Publishers, Co., N. Jersey, London, Singapore, 2012.
Brunner, H., The numerical solution of weakly singular Volterra integral equations by collocation on graded meshes, Math. Comp., 45(172)(1985), 417–437.
Brunner, H., Pedas, A., Vainikko, G., The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations, Math. Comp., 68(227)(1999), 1079–1095.
Cao, Y., Huang, M., Liu, L., Xu, Y., Hybrid collocation methods for Fredholm integral equations with weakly singular kernels, Appl. Numer. Math., 57(2007), 549–561.
Diethelm, K., The Analysis of Fractional Differential Equations. Lecture Notes In Mathematics, vol. 2004, Springer-Verlag Berlin, Heidelberg, 2010.
Diogo, T., Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations, J. Comput. Appl. Math., 229(2009), 363–372.
Du, M., Wang, Z., Hu, H., Measuring memory with order of fractional derivative, Sci. Rep., 3(2013), 3431.
Ezzat, M.A., Sabbah, A.S., El-Bary, A.A., Ezzat, S.M., Thermoelectric viscoelastic fluid with fractional integral and derivative heat transfer, Adv. Appl. Math. Mech., 7(2015), 528-548.
Garrappa, R., Numerical solution of fractional differential equations: A survey and software tutorial, Mathematics, 6(2018), 16.
Gorenflo, R., Vessella, S., Abel Integral Equations: Analysis and Applications, in: Lecture Notes in Mathematics, vol. 1461, Springer Verlag, Berlin, 1991.
Graham, I., Galerkin methods for second kind integral equations with singularities, Math. Comp., 39(1982), no. 160, 519-533.
Kaneko, H., Noren, R., Xu, Y., Regularity of the solution of Hammerstein equations with weakly singular kernel, Integral Equations Operator Theory, 13(1990), 660-670.
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
Lakshmikantham, V., Leela, S., Vasundhara, J., Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
Lorentz, G.G., Bernstein Polynomials, Toronto, Univ. Toronto Press, 1953.
Lubich, C., Runge-Kutta theory for Volterra and Abel integral equations of the second kind, Math. Comp., 41(163)(1983), 87-102.
Maleknejad, K., Mollapourasl, R., Ostadi, A., Convergence analysis of Sinc-collocation methods for nonlinear Fredholm integral equations with a weakly singular kernel, J. Comput. Appl. Math., 278(2015), 1–11.
Maleknejad, K., Nosrati, M., Najafi, E., Wavelet Galerkin method for solving singular integral equations, Comput. Appl. Math., 31(2012), no. 2, 373-390.
Mandal, M., Nelakanti, G., Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm–Hammerstein integral equations, J. Comput. Appl. Math., 349(2019), 114–131.
Micula, S., An iterative numerical method for fractional integral equations of the second kind, J. Comput. Appl. Math., 339(2018), 124–133.
Micula, S., A numerical method for weakly singular nonlinear Volterra integral equations of the second kind, Symmetry, 12(2020), 1862.
Miller, K.S., Ross, B., An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.
Mohammad, M., Trounev, A., Implicit Riesz wavelets based-method for solving singular fractional integro-differential equations with applications to hematopoietic stem cell modeling, Chaos Solitons Fractals, 138(2020), 109991.
Muskhelishvili, N.I., Radok, J.R.M., Singular Integral Equations: Boundary Problems of Function Theory and their Application to Mathematical Physics, Courier Corporation, Chelmsford, 2008.
Okayama, T., Matsuo, T., Sugihara, M., Sinc-collocation methods for weakly singular Fredholm integral equations of the second kind, J. Comput. Appl. Math., 234(2010), 1211-1227.
Podlubny, I., Fractional Differential Equation, Academic Press, San Diego, 1999.
Ren, Y., Zhang, B., Qiao, H., A simple Taylor-series expansion method for a class of second kind integral equations, J. Comput. Appl. Math., 110(1999), 15-24.
Schneider, C., Regularity of the solution to a class of weakly singular Fredholm integral equations of the second kind, Integral Equations Operator Theory, 2(1979), 62-68.
Schneider, C., Product integration for weakly singular integral equations, Math. Comp., 36(153)(1981), 207-213.
Srivastava, H.M., Dubey, V.P., Kumar, R., Singh, J., Kumar, D., Baleanu, D., An efficient computational approach for a fractional-order biological population model with carrying capacity, Chaos Solitons Fractals, 138(2020), 109880.
Torvik, P.J., Bagley, R.L., On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51(1984), 294–298.
Usta, F., Numerical analysis of fractional Volterra integral equations via Bernstein approximation method, J. Comput. Appl. Math., 384(2021), 113198.
Wu, G.C., Baleanu, D., Variational iteration method for fractional calculus – A universal approach by Laplace transform, Adv. Differential Equations, 2013(18)(2013), 1–9.
Yang, Y., Tang, Z., Huang, Y., Numerical solutions for Fredholm integral equations of the second kind with weakly singular kernel using spectral collocation method, Appl. Math. Comput., 349(2019), 314–324.
Young, A., Approximate product-integration, Proc. R. Soc. Lond., Ser. A, 224(1954), 552–561.
Yousefi, S.A., Numerical solution of Abel’s integral equation by using Legendre wavelets, Appl. Math. Comput., 175(2006), 574-580.
Yousefi, A., Javadi, S., Babolian, E., A computational approach for solving fractional integral equations based on Legendre collocation method, Math. Sciences, 13(2019), 231–240.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.