A generalization of Bernstein-Durrmeyer operators on hypercubes by means of an arbitrary measure

Authors

  • Mirella CAPPELLETTI MONTANO Universit`a degli Sudi di Bari Aldo Moro Dipartimento di Matematica Via E. Orabona 4 70125 Bari, Italy, e-mail: mirella.cappellettimontano@uniba.it https://orcid.org/0000-0003-1850-0428
  • Vita LEONESSA Universit`a degli Studi della Basilicata Dipartimento di Matematica, Informatica ed Economia Viale dell’Ateneo Lucano 10 85100 Potenza, Italy, e-mail: vita.leonessa@unibas.it https://orcid.org/0000-0001-9547-8397

DOI:

https://doi.org/10.24193/subbmath.2019.2.09

Keywords:

Bernstein operator, Bernstein-Durrmeyer operator, approximation process, asymptotic formula.

Abstract

In this paper we introduce and study a sequence of Bernstein- Durrmeyer type operators (Mn,µ)n1, acting on spaces of continuous or inte- grable functions on the multi-dimensional hypercube Qd of Rd (d ≥ 1), defined by means of an arbitrary measure µ. We investigate their approximation proper- ties both in the space of all continuous functions and in Lp-spaces with respect to µ, also furnishing some estimates of the rate of convergence. Further, we prove an asymptotic formula for the Mn,µ’s. The paper ends with a concrete example.

Mathematics Subject Classification (2010): 41A36, 41A63, 41A10.

References

Albanese, A.A., Campiti, M., Mangino, E.M., Regularity properties of semigroups generated by some Fleming-Viot type operators, J. Math. Anal. Appl., 335(2007), 1259-1273.

Altomare, F., Campiti, M., Korovkin-Type Approximation Theory and its Applications, de Gruyter Studies in Mathematics, 17, Walter de Gruyter, Berlin-New York, 1994.

Altomare, F., Cappelletti Montano, M., Leonessa, V., On the positive semigroups generated by Fleming-Viot type differential operators, Comm. Pure Appl. Anal., 18(1)(2019), 323-340.

Altomare, F., Cappelletti Montano, M., Leonessa, V., Ra¸sa, I., Markov Operators, Positive Semigroups and Approximation Processes, de Gruyter Studies in Mathematics, 61, Walter de Gruyter GmbH, Berlin/Boston, 2014.

Bauer, H., Probability Theory, de Gruyter Studies in Mathematics, 23, Walter de Gruyter & Co., Berlin, 1996.

Berdysheva, E.E., Uniform convergence of Bernstein-Durrmeyer operators with respect to arbitrary measure, J. Math. Anal. Appl., 394(2012), 324-336.

Berdysheva, E.E., Bernstein-Durrmeyer operators with respect to arbitrary measure, II: Pointwise convergence, J. Math. Anal. Appl., 418(2014), 734-752.

Berdysheva, E.E., Jetter, K., Multivariate Bernstein Durrmeyer operators with arbitrary weight functions, J. Approx. Theory, 162(2010), 576-598.

Berdysheva, E.E., Li, B.Z., On Lp-convergence of Bernstein Durrmeyer operators with respect to arbitrary measure, Publ. Inst. Math., Beograd (N.S.), 96(110)(2014), 23-29.

Berens, H., De Vore, R., Quantitative Korovkin Theorems for positive linear operators on Lp-spaces, Trans. Amer. Math. Soc., 245(1978), 349-361.

Berens, H., Xu, Y., On Bernstein-Durrmeyer polynomials with Jacobi weights, in: C.K. Chui (ed.), Approximation Theory and Functional Analysis, Academic Press, Boston, 1991, 25-46.

Derriennic, M.M., Sur l’approximation de fonctions int´egrables sur [0, 1] par des polynoˆmes de Bernstein modifies, J. Approx. Theory, 31(1981), 325-343.

Ditzian, Z., Multidimensional Jabobi-type Bernstein-Durrmeyer operators, Acta Sci. Math., Szeged, 60(1995), 225-243.

Ditzian, Z., Totik, V., Moduli of Smoothness, Springer Series in Computational Mathematics, 9, Springer-Verlag, New York, 1987.

Durrmeyer, J.L., Une formule d’inversion de la transform´ee de Laplace: applications a` la th´eorie des moments, Th`ese de 3e cycle, Facult´e des Sciences de l’Universit´e de Paris, 1967.

Lorentz, G.G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953. [17] Li, B.Z., Approximation by multivariate Bernstein-Durrmeyer operators and learning rates of least-squares regularized regression with multivariate polynomial kernels, J. Approx. Theory, 173(2013), 33-55.

Lupa¸s, A., Die Folge der Betaoperatoren, Dissertation, Universit¨at Stuttgart, 1972. [19] P˘alta˘nea, R., Sur un op´erateur polynomial d´efini sur l’ensemble des fonctions int´egrables, Univ. Babe¸s-Bolyai, Cluj-Napoca, 83(1983), no. 2, 101-106.

Royden, H.L., Real Analysis, third ed., Macmillan Publishing Company, New York, 1988. [21] Vladislav, T., Ra¸sa, I., Analiza˘ Numerica˘, Aproximare, Problema lui Cauchy Abstracta˘, Proiectorii Altomare, Ed. Tehnic˘a, Bucure¸sti, 1999.

Waldron, Sh., A generalization of beta integral and the limit of Bernstein-Durrmeyer operator with Jacobi weights, J. Approx. Theory, 122(2003), 141-150.

Downloads

Published

2019-06-30

How to Cite

CAPPELLETTI MONTANO, M., & LEONESSA, V. (2019). A generalization of Bernstein-Durrmeyer operators on hypercubes by means of an arbitrary measure. Studia Universitatis Babeș-Bolyai Mathematica, 64(2), 239–252. https://doi.org/10.24193/subbmath.2019.2.09

Issue

Section

Articles

Similar Articles

<< < 17 18 19 20 21 22 

You may also start an advanced similarity search for this article.