Transmission problem between two Herschel-Bulkley fluids in thin layer
DOI:
https://doi.org/10.24193/subbmath.2023.3.14Keywords:
Herschel-Bulkley fluid, transmission, thin layer, asymptotic behaviour.Abstract
This paper is devoted to the study of steady-state transmission problem between two Herschel-Bulkley fluids in thin layer.
Mathematics Subject Classification (2010): 76A05, 49J40, 76B15.
References
Boughanim, F., Boukrouche, M., Smaoui, H., Asymptotic behavior of a non-Newtonian flow with stick-slip condition, Electron. J. Differ. Equ. Conf., (2004), 71-80.
Bourgeat, A., Mikelic, A., Tapiéro, R., Dérivation des equations moyennées décrivant un ecoulement non Newtonien dans un domaine de faible epaisseur, C.R. Math. Acad. Sci. Paris, 316(I)(1993), 965-970.
Brezis, H., Equations et inéquations non linéaires dans les espaces en dualité, Ann. Inst. Fourier (Grenoble), 18(1996), no. 1, 115-175.
Bunoiu, R., Kesavan, S., Fluide de Bingham dans une couche mince, Annals of the University of Craiova, Maths. Comp. Sci. Ser, 30(2003), 71-77.
Bunoiu, R., Saint Jean Paulin, J., Nonlinear viscous flow through a thin slab in the lubrification case, Rev. Roumaine Math. Pures Appl., 45(2000), no. 4, 577-591.
Ekeland, I., Temam, R., Analyse Convexe et Problèmes Variationnels, Dunod, Paris, 1974.
Málek, J., Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations, Electron. Trans. Numer. Anal, 31(2008), 110-125.
Málek, J., Růžička, M., Shelukhin, V.V., Herschel-Bulkley fluids, existence and regularity of steady flows, Math. Models Methods Appl. Sci., 15(12)(2005), 1845-1861.
Messelmi, F., Effects of the yield limit on the behaviour of Herschel-Bulkley fluid, Non-linear Sci. Lett. A, 2(2011), no. 3, 137-142.
Messelmi, F., Merouani, B., Flow of Herschel-Bulkley fluid through a two dimensional thin layer, Stud. Univ. Babe¸s-Bolyai Math., 58(2013), no. 1, 119-130.
Messelmi, F., Merouani, B., Bouzeghaya, F., Steady-state thermal Herschel-Bulkley flow with Tresca’s friction law, Electron. J. Differential Equations, 2010(2010), no. 46, 1-14.
Mikelic, A., Tapi´ero, R., Mathematical derivation of the power law describing polymer flow through a thin layer, ESAIM Math. Model. Numer. Anal., 29(1995), 3-22.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.