Spline and fractal spline interpolation
Keywords:
28A80, 65D05.Abstract
The classical methods of real data interpolation can be generalized by fractal interpolation. These fractal interpolation functions provide new methods of approximation of experimental data. This paper presents an application of these interpolation methods.
Mathematics Subject Classification (2010): Fractal interpolation functions.
References
Barnsley, M.F., Fractals everywhere, Academic Press, Orlando, Florida, 1988.
Chand, A.K.B., Kapoor, G.P., Generalized cubic spline interpolation function, SIAM J. Numer. Anal., 44(2006), no. 2, 655-676.
Coman, Gh., Birou, M., Osan, C., Somogyi, I., Catinas, T., Oprisan, A., Pop, I., Todea, I., Interpolation operators, Casa Cartii de Stiinta, Cluj-Napoca, 2004.
Hutchinson, J.E., Fractals and Self Similarity, Indiana University Mathematical Journal, 30(1981), no. 5, 713-747.
Navascues, M.A., Meyer, M.V., Some results of convergence of cubic spline fractal interpolation functions, Fractals, 11(2003), 105-122.
Soos, A., Jakabffy, Z., Fractal analysis of normal and pathological body temperature graphs, Proceedings of the Tiberiu Popoviciu Itinerant Seminar of Functional Equations, Approximation and Convexity, Cluj, May 22-26, 2001, 247-254.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.