Spline and fractal spline interpolation

Authors

  • Ildiko SOMOGYI Universitatea Babes Bolyai, Cluj-Napoca, Romania, Departamentul de Matematică şi Informatică al Liniei Maghiare. e-mail: ilkovacs@math.ubbcluj.ro
  • Anna SOÓS Universitatea Babes Bolyai Facultatea de Matematica si Informatica: Cluj-Napoca, RO. asoos@math.ubbcluj.ro https://orcid.org/0000-0002-3305-0296

Keywords:

28A80, 65D05.

Abstract

The classical methods of real data interpolation can be generalized by fractal interpolation. These fractal interpolation functions provide new methods of approximation of experimental data. This paper presents an application of these interpolation methods.

Mathematics Subject Classification (2010): Fractal interpolation functions.

References

Barnsley, M.F., Fractals everywhere, Academic Press, Orlando, Florida, 1988.

Chand, A.K.B., Kapoor, G.P., Generalized cubic spline interpolation function, SIAM J. Numer. Anal., 44(2006), no. 2, 655-676.

Coman, Gh., Birou, M., Osan, C., Somogyi, I., Catinas, T., Oprisan, A., Pop, I., Todea, I., Interpolation operators, Casa Cartii de Stiinta, Cluj-Napoca, 2004.

Hutchinson, J.E., Fractals and Self Similarity, Indiana University Mathematical Journal, 30(1981), no. 5, 713-747.

Navascues, M.A., Meyer, M.V., Some results of convergence of cubic spline fractal interpolation functions, Fractals, 11(2003), 105-122.

Soos, A., Jakabffy, Z., Fractal analysis of normal and pathological body temperature graphs, Proceedings of the Tiberiu Popoviciu Itinerant Seminar of Functional Equations, Approximation and Convexity, Cluj, May 22-26, 2001, 247-254.

Downloads

Published

2015-06-30

How to Cite

SOMOGYI, I., & SOÓS, A. (2015). Spline and fractal spline interpolation. Studia Universitatis Babeș-Bolyai Mathematica, 60(2), 193–199. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5717

Issue

Section

Articles