Existence and stability results for nonlocal initial value problems for differential equations with Hilfer fractional derivative
DOI:
https://doi.org/10.24193/subbmath.2018.4.03Keywords:
Hilfer’s fractional derivative, Caputo and Riemann-Liouville sense, existence, uniqueness, fixed point, Ulam stability.Abstract
In this paper, we establish sufficient conditions for the existence and stability of solutions for a class of nonlocal initial value problems for differential equations with Hilfer’s fractional derivative. The arguments are based upon the Banach contraction principle. Two examples are included to show the applicability of our results.
Mathematics Subject Classification (2010): 26A33.
References
Abbas, S., Benchohra, M., N’Gu´er´ekata, G.M., Topics in Fractional Differential Equations, Springer, New York, 2012.
Abbas, S., Benchohra, M., N’Gu´er´ekata, G.M., Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
Benchohra, M., Lazreg, J.E., Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babe¸s-Bolyai Math., 62(2017), no. 1, 27-38.
Furati, K.M., Kassim, M.D., Tatar, N.-E., Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64(2012), 1616-1626.
Furati, K.M., Kassim, M.D., Tatar, N.-E., Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differential Equations, 235(2013), 10 pp.
Gerolymatou, E., Vardoulakis, I., Hilfer, R., Modelling infiltration by means of a nonlinear fractional diffusion model, J. Physics D, Applied Physics, 39(2006), 4104-4110.
Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
Hilfer, R., Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284(2002), 399-408.
Hilfer, R., Anton, L., Fractional master equations and fractal time random walks, Physical Review E, 51(1995), 848-851.
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
Kou, C., Liu, J., Ye, Y., Existence and uniqueness of solutions for the Cauchy-type problems of fractional differential equations, Discrete Dyn. Nat. Soc., 2010(2010), 1-15.
Mainardi, F., Gorenflo, R., Time-fractional derivatives in relaxation processes: a tutorial survey, Fract. Calc. Appl. Anal., 10(2007), no. 3, 269-308.
Podlubny, I., Fractional Differential Equations, in: Mathematics in Science and Engineering, vol. 198, Acad. Press, 1999.
Rus, I.A., Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26(2010), 103-107.
Tomovski, Z., Sandev, T., Metzler, R., Dubbeldam, J., Generalized space-time fractional diffusion equation with composite fractional time derivative, Phys. A, 391(2012), 2527- 2542.
Tan Wenchang, X.M., Pan, W., A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, Intern. J. Nonlin. Mech., 38(2003), 645-650.
Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. [18] Sandev, T., Metzler, R., Tomovski, Z., Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, J. Phys. A, Math. Theor., 44(2011),255203.
Wang, J., Zhang, Y., Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266(2015), 850-859.
Ye, H., Gao, J., Ding, Y., A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328(2007), 1075-1081.
Zhou, Y., Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.