Existence theory for implicit fractional q-difference equations in Banach spaces
DOI:
https://doi.org/10.24193/subbmath.2022.4.02Keywords:
Fractional q-difference equation, implicit, measure of noncompactness, solution, fixed point.Abstract
This paper deals with some existence results for a class of implicit fractional q-difference equations. The results are based on the fixed point theory in Banach spaces and the concept of measure of noncompactness. An illustrative example is given in the last section.
Mathematics Subject Classification (2010): 26A33, 34G20.
Received 15 January 2020; Accepted 13 April 2020.
References
Abbas, S., Benchohra, M., Graef, J.R., Henderson, J., Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.
Abbas, S., Benchohra, M., N’Gu´er´ekata, G.M., Topics in Fractional Differential Equations, Springer, New York, 2012.
Abbas, S., Benchohra, M., N’Gu´er´ekata, G.M., Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
Abbas, S., Benchohra, M., Vityuk, A.N., On fractional order derivatives and Darboux problem for implicit differential equations, Frac. Calc. Appl. Anal., 15(2)(2012), 168-182.
Adams, C.R., On the linear ordinary q-difference equation, Annals Math., 30(1928), 195-205.
Agarwal, R., Certain fractional q-integrals and q-derivatives, Proc. Camb. Philos. Soc., 66(1969), 365-370.
Ahmad, B., Boundary value problem for nonlinear third order q-difference equations, Electron. J. Differential Equations, 2011(2011), no. 94, 1-7.
Ahmad, B., Ntouyas, S.K., Purnaras, L.K., Existence results for nonlocal boundary value problems of nonlinear fractional q-difference equations, Adv. Difference Equ., 2012, 2012:140.
Alva`rez, J.C., Measure of noncompactness and fixed points of nonexpansive condensing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis. Natur. Madrid, 79(1985), 53-66.
Ayerbee Toledano, J.M., Dominguez Benavides, T., Lopez Acedo, G., Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory, Advances and Applica- tions, 99, Birkha¨user, Basel, Boston, Berlin, 1997.
Bana`s, J., Goebel, K., Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, 1980.
Benchohra, M., Berhoun, F., N’Gu´er´ekata, G.M., Bounded solutions for fractional order differential equations on the half-line, Bull. Math. Anal. Appl., 146(2012), no. 4, 62-71.
Benchohra, M., Bouriah, S., Darwish, M., Nonlinear boundary value problem for implicit differential equations of fractional order in Banach spaces, Fixed Point Theory, 18(2017), no. 2, 457-470.
Benchohra, H., Bouriah, S., Henderson, J., Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses, Comm. Appl. Nonlinear Anal., 22(2015), no. 1, 46-67.
Carmichael, R.D., The general theory of linear q-difference equations, American J. Math., 34(1912), 147-168.
El-Shahed, M., Hassan, H.A., Positive solutions of q-difference equations, Proc. Amer. Math. Soc., 138(2010), 1733-1738.
Etemad, S., Ntouyas, S.K., Ahmad, B., Existence theory for a fractional q-integro- difference equation with q-integral boundary conditions of different orders, Mathematics, 7(659)(2019), 1-15.
Kac, V., Cheung, P., Quantum Calculus, Springer, New York, 2002.
Kilbas, A.A., Hadamard-type fractional calculus, J. Korean Math. Soc., 38(6)(2001), 1191-1204.
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
Lakshmikantham, V., Vasundhara Devi, J., Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1(2008), 38-45.
Machado, T.J.A., Kiryakova, V., The chronicles of fractional calculus, Fract. Calc. Appl. Anal., 20(2017), 307-336.
M¨onch, H., Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal., 4(1980), 985-999.
Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S., Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math., 1(2007), 311-323.
Rajkovic, P.M., Marinkovic, S.D., Stankovic, M.S., On q-analogues of Caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., 10(2007), 359-373.
Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. [27] Tarasov, V.E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg; Higher Education Press, Beijing, 2010.
Toledano, J.M.A., Benavides, T.D., Acedo, G.L., Measures of Noncompactness in Metric Fixed Point Theory, Birkha¨user, Basel, 1997.
Yang, M., Wang, Q., Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions, Fract. Calc. Appl. Anal., 20(2017), 679-705.
Zhou, Y., Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.