Existence and stability results for nonlocal initial value problems for differential equations with Hilfer fractional derivative

Authors

  • Mouffak BENCHOHRA Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbes P.O. Box 89 Sidi Bel Abbes 22000, Algeria, e-mail: benchohra@univ-sba.dz https://orcid.org/0000-0003-3063-9449
  • Soufyane BOURIAH Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbes P.O. Box 89 Sidi Bel Abbes 22000, Algeria and Department of Mathematics, Faculty of Exact Sciences and Informatics Hassiba Benbouali University, P.O. Box 151 Chlef 02000, Algeria, e-mail: s.bouriah@univ-chlef.dz Bouriahsoufiane@yahoo.fr https://orcid.org/0000-0002-6077-2913
  • Juan J. NIETO Departamento de Ana´lisis Matema´tico, Facultad de Matema´ticas Universidad de Santiago de Compostela Santiago de Compostela, Spain, e-mail: juanjose.nieto.roig@usc.es https://orcid.org/0000-0001-8202-6578

DOI:

https://doi.org/10.24193/subbmath.2018.4.03

Keywords:

Hilfer’s fractional derivative, Caputo and Riemann-Liouville sense, existence, uniqueness, fixed point, Ulam stability.

Abstract

In this paper, we establish sufficient conditions for the existence and stability of solutions for a class of nonlocal initial value problems for differential equations with Hilfer’s fractional derivative. The arguments are based upon the Banach contraction principle. Two examples are included to show the applicability of our results.

Mathematics Subject Classification (2010): 26A33.

References

Abbas, S., Benchohra, M., N’Gu´er´ekata, G.M., Topics in Fractional Differential Equations, Springer, New York, 2012.

Abbas, S., Benchohra, M., N’Gu´er´ekata, G.M., Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.

Benchohra, M., Lazreg, J.E., Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative, Stud. Univ. Babe¸s-Bolyai Math., 62(2017), no. 1, 27-38.

Furati, K.M., Kassim, M.D., Tatar, N.-E., Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64(2012), 1616-1626.

Furati, K.M., Kassim, M.D., Tatar, N.-E., Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differential Equations, 235(2013), 10 pp.

Gerolymatou, E., Vardoulakis, I., Hilfer, R., Modelling infiltration by means of a nonlinear fractional diffusion model, J. Physics D, Applied Physics, 39(2006), 4104-4110.

Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

Hilfer, R., Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284(2002), 399-408.

Hilfer, R., Anton, L., Fractional master equations and fractal time random walks, Physical Review E, 51(1995), 848-851.

Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.

Kou, C., Liu, J., Ye, Y., Existence and uniqueness of solutions for the Cauchy-type problems of fractional differential equations, Discrete Dyn. Nat. Soc., 2010(2010), 1-15.

Mainardi, F., Gorenflo, R., Time-fractional derivatives in relaxation processes: a tutorial survey, Fract. Calc. Appl. Anal., 10(2007), no. 3, 269-308.

Podlubny, I., Fractional Differential Equations, in: Mathematics in Science and Engineering, vol. 198, Acad. Press, 1999.

Rus, I.A., Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26(2010), 103-107.

Tomovski, Z., Sandev, T., Metzler, R., Dubbeldam, J., Generalized space-time fractional diffusion equation with composite fractional time derivative, Phys. A, 391(2012), 2527- 2542.

Tan Wenchang, X.M., Pan, W., A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates, Intern. J. Nonlin. Mech., 38(2003), 645-650.

Samko, S.G., Kilbas, A.A., Marichev, O.I., Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. [18] Sandev, T., Metzler, R., Tomovski, Z., Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative, J. Phys. A, Math. Theor., 44(2011),255203.

Wang, J., Zhang, Y., Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266(2015), 850-859.

Ye, H., Gao, J., Ding, Y., A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328(2007), 1075-1081.

Zhou, Y., Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.

Downloads

Published

2018-12-20

How to Cite

BENCHOHRA, M., BOURIAH, S., & NIETO, J. J. (2018). Existence and stability results for nonlocal initial value problems for differential equations with Hilfer fractional derivative. Studia Universitatis Babeș-Bolyai Mathematica, 63(4), 447–464. https://doi.org/10.24193/subbmath.2018.4.03

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.