Fekete-Szegö problem for a class of analytic functions defined by Carlson-Shaffer operator
DOI:
https://doi.org/10.24193/subbmath.2018.3.04Keywords:
Analytic function, Fekete-Szegö problem, Carlson-Shaffer operator.Abstract
In the present paper, authors study a Fekete-Szegö problem for a class of analytic functions defined by Carlson-Shaffer operator. Relevant connections of the results presented here with various known results are briefly indicated.
Mathematics Subject Classification (2010): 30C45.
References
Al-Abbadi, M.H., M. Darus, M., The Fekete-Szeg¨o theorem for a certain class of analytic functions, Sains Malaysiana, 40(2011), no. 4, 385-389.
Ali, R.M., Lee, S.K., Ravichandran, V., Supramaniam, S., The Fekete-Szeg¨o coefficient functional for transform of analytic functions, Bull. Iran. Math. Soc., 35(2009), no. 2, 119-142.
Al-Shaqsi, K., Darus, M., On the Fekete-Szeg¨o problem for certain subclasses of analytic functions, Appl. Math. Sci., 2(2008), no. 8, 431-441.
Bansal, D., Fekete-Szeg¨o problem for a new class of analytic functions, Int. J. Math. Math. Sci., (2011), art. ID 143096, 1-5.
Bhowmik, B., Ponnusamy, S., Wirths, K.J., On the Fekete-Szeg¨o problem for concave univalent functions, J. Math. Anal. Appl., 373(2011), 432-438.
Carlson, B.C., Shaffer, D.B., Starlike and Prestarlike hypergeometric functions, SIAM J. Math. Anal., 15(1984), 737-745.
Cho, N.E., Owa, S., On Fekete-Szeg¨o problem for strongly α-quasiconvex functions, Tamkang J. Math., 34(2003), no. 1, 21-28.
Choi, J.H., Kim, Y.C., Sugawa, T., A general approach to the Fekete-Szeg¨o problem, J. Math. Soc. Japan, 59(2007), no. 3, 707727.
Darus, M., Shanmugam, T.N., Sivasubramanian, S., Fekete-Szeg¨o inequality for a certain class of analytic functions, Mathematica, 49(72)(2007), no. 1, 2934.
Fekete, M., Szego¨, G., Eine bemerkung uber ungerade schlichten funktionene, J. Lond. Math. Soc., 8(1993), 85-89.
Keogh, F.R., Merkes, E.P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20(1969), 8-12.
Koepf, W., On Fekete-Szeg¨o problem for close-to-convex functions, Proc. Amer. Math. Soc., 101(1987), no. 1, 89-95.
Koepf, W., On Fekete-Szeg¨o problem for close-to-convex functions II, Archiv der Mathematik, 49(1987), no. 5, 420-433.
Li, J.L., On some classes of analytic functions, Math. Japon., 40(1994), no. 3, 523-529. [15] Libera, R.J., Zlotkiewicz, E.J., Coefficient bounds for the inverse of a function with derivative in ρ, Proc. Amer. Math. Soc., 87(1983), no. 2, 251-257.
London, R.R., Fekete-Szeg¨o inequalities for close-to-convex functions, Proc. Amer. Math. Soc., 117(1993), no. 4, 947-950.
Murugusundaramoorthy, G., Kavitha, S., Rosy, T., On the Fekete-Szeg¨o problem for some subclasses of analytic functions defined by convolution, Proc. Pakistan Acad. Sci., 44(2007), no. 4, 249-254.
Ponnusamy, S., Neighbourhoods and Caratheodory functions, J. Anal., 4(1996), 41-51. [19] Ponnusamy, S., Rønning, F., Integral transform of a class of analytic functions, Complex Var. Ellip. Equan., 53(2008), no. 5, 423-434.
Shanmugan, T.N., Jeyaraman, M.P., Sivasubramanian, S., Fekete-Szeg¨o functional for some subclasses of analytic functions, Southeast Asian Bull. Math., 32(2008), no. 2, 363370.
Swaminathan, A., Sufficient conditions for hypergeometric functions to be in a certain class of analytic functions, Computers Math. Appl., 59(2010), no. 4, 1578-1583.
Swaminathan, A., Certain sufficiency conditions on Gaussian hypergeometric functions, J. Inequal. Pure Appl. Math., 5(2004), no. 4, art. 83.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.