Relative and mutual monotonicity

Authors

  • Cornel PINTEA Babe¸s-Bolyai University, Faculty of Mathematics and Computer Sciences, 1, Kog˘alniceanu Street, 400084 Cluj-Napoca, Romania, e-mail: cpintea@math.ubbcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2022.1.05

Keywords:

Minty-Browder monotonicity, h-monotonicity, mutual h-monotonicity.

Abstract

In this work we first consider a certain monotonicity relative to some given one-to-one operator and prove the counterparts, adjusted to this new con- text, of most results obtained before in the joint work with G. Kassay [10]. For two operators with the same status relative to injectivity, such as two local injective operators, we define what we call mutual h-monotonicity and prove that every two mutual h-monotone local diffeomorphisms can be obtained from each other via a composition with a h-monotone diffeomorphism.

Mathematics Subject Classification (2010): 47H99, 55M25, 55M20.

Received 15 December 2021; Accepted 29 December 2021.

References

Berger, M., Gostiaux, B., Differential Geometry: Manifolds, Curves and Surfaces, Springer-Verlag, 1988.

Browder, F.E., Multi-valued monotone nonlinear mappings, Trans. Amer. Math. Soc., 118(1965), 338-551.

Browder, F.E., Nonlinear maximal monotone mappings in Banach spaces, Math. Ann., 175(1968), 81-113.

Browder, F.E., The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann., 177(1968), 283-301.

Church, P.T., Timourian, J.G., Differentiable maps with 0-dimensional critical set, Pacific J. Math., 41(1972), no. 3, 615-630.

Correa, R., Jofre, A., Thibault, L., Characterization of lower semicontinuous convex functions, Proc. Amer. Math. Soc., 116(1992), 67-72.

Dold, A., Lectures on Algebraic Topology, Springer-Verlag, New York-Berlin, 1972.

Godbillon, C., E´lements de Topologie Algebrique, Hermann, Paris, 1971.

Hirsch, M.W., Differential Topology, Springer-Verlag, New York, 1976.

Kassay, G., Pintea, C., On preimages of a class of generalized monotone operators, Nonlinear Anal., 73(2010), 3537-3545.

Kassay, G., Pintea, C., Szenkovits, F., On convexity of inverse images of monotone operators, Taiwanese J. Math., 13(2009), no. 2B, 675-686.

Marian, D., Peter, I.R., Pintea, C., A class of generalized monotone operators, J. Math. Anal. Appl., 421(2015), 1827-1843.

Minty, G.J., Monotone (nonlinear) operators in Hilbert spaces, Duke Math. J., 29(1962), 341-346.

Minty, G.J., On some aspects of the theory of monotone operators, In: A. Ghizzetti (Ed.), Theory and Applications of Monotone Operators, Odersi, Gubbio, 1969, pp. 67-82.

Neumann, G., Valence of complex-valued planar harmonic functions, Trans. Amer. Math. Soc., 357, no. 8, 3133-3167.

Pascali, D., Sburlan, S., Nonlinear Mappings of Monotone Type, Editura Academiei, Bucuresti, Sijthoff-Noordhoff International Publishers Alphen aan den Rijn, 1978.

Pintea, C., Tofan, A., Convex decompositions and the valence of some functions, J. Nonlinear Var. Anal., 4(2020), no. 2, 225-239.

Pintea, C., Trif, T., The monotonicity of perturbed gradients of convex functions, J. Convex Anal., 24(2017), no. 2, 525-545.

Downloads

Published

2022-03-10

How to Cite

PINTEA, C. (2022). Relative and mutual monotonicity. Studia Universitatis Babeș-Bolyai Mathematica, 67(1), 55–72. https://doi.org/10.24193/subbmath.2022.1.05

Issue

Section

Articles

Similar Articles

You may also start an advanced similarity search for this article.