Topological degree methods for a nonlinear elliptic system with variable exponents

Authors

  • Samira LECHEHEB Department of Mathematics, "LAMAHIS" Laboratory of Applied Mathematics, History and Didactics of Mathematics, University of 20 August 1955, Skikda, Algeria. Email: s.lecheheb@univ-skikda.dz
  • Abdelhak FEKRACHE Faculty of Sciences, University of 20 August 1955, Skikda, Algeria. Email: abde.fek@gmail.com

DOI:

https://doi.org/10.24193/subbmath.2024.4.12

Keywords:

p(x)-Laplacian, operator of (S+) type, variable exponent, topological degree

Abstract

In this paper, we consider the existence of a distributional solution for nonlinear elliptic system governed by (p(x),q(x))-Laplacian operators. We show that the system has at least one solution by using the topological degree theory. Our results improve and generalize existing results with another technical approach.

Mathematics Subject Classification (2010): 35J60, 35J40, 47H11.

References

1. Acerbi, E., Mingione, G., Regularity results for stationary electro-eheological fluids, Arch. Ration. Mech. Anal., 164(2002), no. 3, 213-259.

2. Ait Hammou, M., Azroul, E., Lahmi, B., Existence of solutions for p(x)-Laplacian Dirichlet problem by topological degree, Bull. Transilv. Univ. Brasov Ser III., 11(2018), no. 2, 29-38.

3. Ait Hammou, M., Azroul, E., Existence result for a nonlinear elliptic problem by topological degree in Sobolev spaces with variable exponent, Moroccan J. of Pure and Appl. Anal. (MJPAA), 7(2021), no. 1 ,50-65.

4. Baraket, S., Molica Bisci, G., Multiplicity results for elliptic Kirchhoff-type problems, Adv. Nonlinear Anal., 6(2017), no. 1, 85-93.

5. Berkovits, J., Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differential. Equations, 234(2007), no. 1, 289-310.

6. Brouwer, L.E.J., Uber Abbildung von Mannigfaltigkeiten, Math. Ann., 71(1912), 97-115.

7. Browder, F.E., Degree of mapping for nonlinear mappings of monotone type, Proc. Natl. Acad. Sci. USA., 80(1983), no. 6, 1771-1773.

8. Browder, F.E., Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc., 9(1983), no. 1, 1-39.

9. Cencelj, M., Repovs, D., Virk, Z., Multiple perturbations of a singular eigenvalue prob- lem, Nonlinear Anal. 119(2015), 37-45.

10. Chabrowski, J., Fu, Y., Existence of solutions for p(x)-Laplacian problems on a bounded domain, J. Math. Anal. Appl, 306(2005), no. 2, 604-618.

11. Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66(2006), no. 4, 1383-1406.

12. Dingien, L., Harjulehto, P., Hasto, P., Ruzicka, M., Lebesgue and Sobolev Spaces with Vriable Exponent, Lecture Notes in Mathematics, Springer, Berlin 2011.

13. Dos Santos, G.G., Figueiredo, G.M., Tavares, L.S., Sub-super solution method for non-local systems involving the p(x)-Laplacian operator, Electron. J. Differential Equations, 2020(2020), no. 25, 1-19.

14. Edmunds, D.E., Lang, J., Nekvinda, A., On Lp(x)(Ω) norms, Proceedings of the Royal Society of London. Series A., 455(1999), 219-225.

15. Edmunds, D.E., Rakosnik, J., Sobolev embeddings with variable exponent, Studia Mathematica, 143(2000), no. 3, 267-293.

16. Fan, X.L., On the sub-super solution method for p(x)-Laplacian equations, J. Math. Anal. Appl., 330(2007), no. 1, 665-682.

17. Fan, X.L., Shen, J., Zhao, D., Sobolev embedding theorems for spaces Wm,p(x)(Ω), J. Math. Anal. Appl., 262(2001), no. 2, 749-760.

18. Fan, X.L., Zhang, Q.H., Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52(2003), no. 8, 1843-1852.

19. Fan, X.L., Zhao, D., On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263(2001), no. 2, 424-446.

20. Kim, I.S., Hong, S.J., A topological degree for operators of generalized (S+) type, Fixed Point Theory Algorithms Sci. Eng., 2015(2015), 194.

21. Kovacik, O., Rakosnik, J., On spaces Lp(x)(Ω) and Wm,p(x)(Ω), Czechoslovak Math.J., 41(1991), 592-618.

22. Leray, J., Schauder, J., Topologie et équations fonctionnelles, Ann. Sci. École Normale Supérieure, 51(1934), no. 3, 45-78.

23. Li, D., Chen, F., Wu, Y., An, Y., Variational formulation for nonlinear impulsive fractional differential equations with (p, q)-Laplacian operator, Math. Methods Appl. Sci., 45(2022), no. 1, 515-531.

24. Matallah, H., Maouni, M., Lakhal, H., Global weak solution to a generic reaction-diffusion nonlinear parabolic system, Math. Methods Appl. Sci., 45(2022), no. 11, 6935- 6950.

25. Mokhtar, N., Mokhtari, F., Anisotropic nonlinear elliptic systems with variable exponents and degenerate coercivity, Appl. Anal., 100(2019), no. 11, 2347-2367.

26. Moussaoui, A., Vélin, J., Existence and a priori estimates of solutions for quasilinear singular elliptic systems with variable exponents, J. Elliptic Parabol Equ., 4(2018), 417- 440.

27. Pucci, P., Xiang, M., Zhang, B., Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal., 5(2016), no. 1, 27-55.

28. Radulescu, V., Repovs, D., Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative Analysis, Monographs and Research Note in Mathematics, CRC Press, Boca Raton, FL, 2015.

29. Ruzicka, M., Electrorheological Fluids: Modelling and Mathematical Theory, Springer-Verlag, Berlin, 2000.

30. Saifia, O., Vélin K, J., Existence result for variable exponents elliptic system with lack of compactness, Appl. Anal., 101(2020), no. 6, 2119-2143.

31. Wang, J., Han, W., Existence of multiple positive solutions for singular p-q-Laplacian problems with critical nonlinearities, Math. Methods Appl. Sci., 45(2022), no. 2, 1005- 1032.

32. Zeidler, E., Nonlinear Functional Analysis and its Applications II/B: Nonlinear Mono- tone Operators, Springer, New York, 1990.

33. Zhao D., Qiang, W.J., Fan, X.L., On generalized Orlicz spaces Lp(x)(Ω), J. Gansu Sci., 9(1996), no. 2, 1-7.

34. Zhikov, V., Averaging of functionals in the calculus of variations and elasticity, Math. USSR Izv., 29(1987), no. 1, 33-66.

Downloads

Published

2024-12-13

How to Cite

LECHEHEB, S., & FEKRACHE, A. (2024). Topological degree methods for a nonlinear elliptic system with variable exponents. Studia Universitatis Babeș-Bolyai Mathematica, 69(4), 881–893. https://doi.org/10.24193/subbmath.2024.4.12

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.