Ostrowski type fractional integral operators for generalized (r; g, s, m, ϕ)-preinvex functions
DOI:
https://doi.org/10.24193/subbmath.2018.2.01Keywords:
Ostrowski’ type inequality, H¨older’s inequality, Minkowski’s inequality, power mean inequality, Riemann-Liouville fractional integral, fractional integral operator, s-convex function in the second sense, m-invex.Abstract
In the present paper, the notion of generalized (r; g, s, m, ϕ)-preinvex function is applied for establish some new generalizations of Ostrowski type in- equalities via fractional integral operators. These results not only extend the results appeared in the literature ([38]) but also provide new estimates on these type. At the end, some applications to special means are given.
Mathematics Subject Classification (2010): 26A33, 26A51, 26D07, 26D10, 26D15.
References
Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279(2015), 57-66.
Agarwal, R.P., Luo, M.J., Raina, R.K., On Ostrowski type inequalities, Fasc. Math., 204(2016), 5-27.
Ahmadmir, M., Ullah, R., Some inequalities of Ostrowski and Gru¨ss type for triple integrals on time scales, Tamkang J. Math., 42(4)(2011), 415-426.
Alomari, M., Darus, M., Dragomir, S.S., Cerone, P., Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23(2010), 1071-1076.
Antczak, T., Mean value in invexity analysis, Nonlinear Anal., 60(2005), 1473-1484. [6] Bullen, P.S., Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht, 2003.
Dahmani, Z., On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1(1)(2010), 51-58.
Dahmani, Z., New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9(4)(2010), 493-497.
Dahmani, Z., Tabharit, L., Taf, S., New generalizations of Gru¨ss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3)(2010), 93-99.
Dahmani, Z., Tabharit, L., Taf, S., Some fractional integral inequalities, Nonlinear. Sci. Lett. A, 1(2)(2010), 155-160.
Dragomir, S.S., On the Ostrowski’s integral inequality for mappings with bounded variation and applications, Math. Ineq. & Appl., 1(2)(1998).
Dragomir, S.S., The Ostrowski integral inequality for Lipschitzian mappings and applications, Comput. Math. Appl., 38(1999), 33-37.
Dragomir, S.S. Wang, S., An inequality of Ostrowski-Gru¨ss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rules, Comput. Math. Appl., 13(11)(1997), 15-20.
Dragomir, S.S., Wang, S., A new inequality of Ostrowski’s type in L1-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. Math., 28(1997), 239-244.
Du, T.S., Liao, J.G., Li, Y.J., Properties and integral inequalities of Hadamard-Simpson type for the generalized (s, m)-preinvex functions, J. Nonlinear Sci. Appl., 9(2016), 3112- 3126.
Hudzik, H., Maligranda, L., Some remarks on s-convex functions, Aequationes Math., 48(1994), 100-111.
Kashuri, A., Liko, R., Ostrowski type fractional integral inequalities for generalized (s, m, ϕ)-preinvex functions, Aust. J. Math. Anal. Appl., 13(1)(2016), Article 16, 1-11. [18] Kashuri, A., Liko, R., Hermite-Hadamard type fractional integral inequalities for generalized (r; s, m, ϕ)-preinvex functions, Eur. J. Pure Appl. Math., 10(3)(2017), 495-505.
Katugampola, U.N., A new approach to generalized fractional derivatives, Bulletin Math. Anal. Appl., 6(4)(2014), 1-15.
Khalil, R., Horani, M.A., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264(2014), 65-70.
Liu, Z., Some Ostrowski-Gru¨ss type inequalities and applications, Comput. Math. Appl., 53(2007), 73-79.
Liu, Z., Some companions of an Ostrowski type inequality and applications, J. Inequal. in Pure and Appl. Math, 10(2)(2009), Art. 52, 12 pp.
Liu, W., Wen, W., Park, J., Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Math. Notes, 16(1)(2015), 249-256.
Liu, W., Wen, W., Park, J., Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9(2016), 766-777.
Mitrinovic, D.S., Peˇcari´c, J.E., Fink, A.M., Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht, 1993.
O¨ zdemir, M.E., Kavurmac, H., Set, E., Ostrowski’s type inequalities for (α, m)-convex functions, Kyungpook Math. J., 50(2010), 371-378.
Pachpatte, B.G., On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl., 249(2000), 583-591.
Pachpatte, B.G., On a new Ostrowski type inequality in two independent variables, Tamkang J. Math., 32(1)(2001), 45-49.
Pini, R., Invexity and generalized convexity, Optimization, 22(1991), 513-525.
Purohit, S.D., Kalla, S.L., Certain inequalities related to the Chebyshev’s functional involving Erdelyi-Kober operators, Scientia Series A: Math. Sci., 25(2014), 53-63.
Rafiq, A., Mir, N. A., Ahmad, F., Weighted Cˇebyˇsev-Ostrowski type inequalities, Applied Math. Mechanics (English Edition), 28(7)(2007), 901-906.
Raina, R.K., On generalized Wright’s hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2)(2005), 191-203.
Sarikaya, M.Z., On the Ostrowski type integral inequality, Acta Math. Univ. Comenianae, 79(1)(2010), 129-134.
Set, E., G¨ozpinar, A., Choi, J., Hermite-Hadamard type inequalities for twice differen- tiable m-convex functions via conformable fractional integrals, Far East J. Math. Sci., 101(4)(2017), 873-891.
Tunc¸, M., Ostrowski type inequalities for functions whose derivatives are MT-convex, J. Comput. Anal. Appl., 17(4)(2014), 691-696.
Ujevi´c, N., Sharp inequalities of Simpson type and Ostrowski type, Comput. Math. Appl., 48(2004), 145-151.
Yang, X.M., Yang, X.Q., Teo, K.L., Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117(2003), 607-625.
Yildiz, C¸ ., O¨ zdemir, M.E., Sarikaya, M.Z., New generalizations of Ostrowski-like type inequalities for fractional integrals, Kyungpook Math. J., 56(2016), 161-172.
Zhongxue, L., On sharp inequalities of Simpson type and Ostrowski type in two independent variables, Comput. Math. Appl., 56(2008), 2043-2047.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.