Geometric properties of mixed operator involving Ruscheweyh derivative and S˘al˘agean operator

Authors

  • Rabha W. IBRAHIM IEEE: 94086547, Kuala Lumpur, 59200, Malaysia, e-mail: rabhaibrahim@yahoo.com https://orcid.org/0000-0001-9341-025X
  • Mayada T. WAZI University of Technology, Department of Electromechanical Engineering, Iraq, e-mail: mayada.t.wazi@uotechnology.edu.iq
  • Nadia AL-SAIDI University of Technology, Department of Applied Sciences, Iraq, e-mail: nadiamg08@gmail.com https://orcid.org/0000-0002-7255-5246

DOI:

https://doi.org/10.24193/subbmath.2021.3.05

Keywords:

Differential operator, conformable operator, fractional calculus, unit disk, univalent function, analytic function, subordination and superordination.

Abstract

Operator theory is a magnificent tool for studying the geometric behaviors of holomorphic functions in the open unit disk. Recently, a combination bet- ween two well known differential operators, Ruscheweyh derivative and S˘ala˘gean operator are suggested by Lupas in [10]. In this effort, we shall follow the same principle, to formulate a generalized differential-difference operator. We deliver a new class of analytic functions containing the generalized operator. Applications are illustrated in the sequel concerning some differential subordinations of the operator.

Mathematics Subject Classification (2010): 30C45.

References

Darus, M., Ibrahim, R.W., Partial sums of analytic functions of bounded turning with applications, J. Comput. Appl. Math., 29(2010), 81-88.

Dunkl, C.F., Differential-difference operators associated with reflections groups, Trans. Am. Math. Soc., 311(1989), 167-183.

Duren, P., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag New York Inc., 1983.

Ibrahim, R.W., Geometric properties of the differential shift plus complex Volterra opera- tor, Asian-Eur. J. Math., 11.01(2018), 1850013.

Ibrahim, R.W., Generalized Briot-Bouquet differential equation based on new differential operator with complex connections, Gen. Math., 28(2020), 105-114.

Ibrahim, R.W., Darus M., Extremal bounds for functions of bounded turning, Int. Math. Forum, 6(2011), 1623-1630.

Ibrahim, R.W., Darus M., Subordination inequalities of a new S˘ala˘gean-difference opera- tor, Int. J. Math. Comput. Sci., 14(2019), 573-582.

Ibrahim, R.W., Elobaid, R.M., Obaiys, S.J., Generalized Briot-Bouquet differential equation based on new differential operator with complex connections, Axioms, 9(2020), 1-13. [9] Krishna, D., et al., Third Hankel determinant for bounded turning functions of order alpha, J. Nigerian Math. Soc., 34.2(2015), 121-127.

Lupa¸s Alb, A., On special differential subordinations using S˘ala˘gean and Ruscheweyh operators, Math. Inequal. Appl., 12(2009), 781-790.

Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, CRC Press, 2000.

Ruscheweyh, St., New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.

S˘al˘agean, G. St., Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.

Tuneski, N., Bulboaca˘, T., Sufficient conditions for bounded turning of analytic functions, Ukr. Math. J., 70.8(2019), 1288-1299.

Downloads

Published

2021-09-30

How to Cite

IBRAHIM, R. W., WAZI, M. T., & AL-SAIDI, N. (2021). Geometric properties of mixed operator involving Ruscheweyh derivative and S˘al˘agean operator. Studia Universitatis Babeș-Bolyai Mathematica, 66(3), 471–477. https://doi.org/10.24193/subbmath.2021.3.05

Issue

Section

Articles

Similar Articles

<< < 22 23 24 25 26 27 28 29 30 31 > >> 

You may also start an advanced similarity search for this article.