Geometric properties of mixed operator involving Ruscheweyh derivative and S˘al˘agean operator
DOI:
https://doi.org/10.24193/subbmath.2021.3.05Keywords:
Differential operator, conformable operator, fractional calculus, unit disk, univalent function, analytic function, subordination and superordination.Abstract
Operator theory is a magnificent tool for studying the geometric behaviors of holomorphic functions in the open unit disk. Recently, a combination bet- ween two well known differential operators, Ruscheweyh derivative and S˘ala˘gean operator are suggested by Lupas in [10]. In this effort, we shall follow the same principle, to formulate a generalized differential-difference operator. We deliver a new class of analytic functions containing the generalized operator. Applications are illustrated in the sequel concerning some differential subordinations of the operator.
Mathematics Subject Classification (2010): 30C45.
References
Darus, M., Ibrahim, R.W., Partial sums of analytic functions of bounded turning with applications, J. Comput. Appl. Math., 29(2010), 81-88.
Dunkl, C.F., Differential-difference operators associated with reflections groups, Trans. Am. Math. Soc., 311(1989), 167-183.
Duren, P., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag New York Inc., 1983.
Ibrahim, R.W., Geometric properties of the differential shift plus complex Volterra opera- tor, Asian-Eur. J. Math., 11.01(2018), 1850013.
Ibrahim, R.W., Generalized Briot-Bouquet differential equation based on new differential operator with complex connections, Gen. Math., 28(2020), 105-114.
Ibrahim, R.W., Darus M., Extremal bounds for functions of bounded turning, Int. Math. Forum, 6(2011), 1623-1630.
Ibrahim, R.W., Darus M., Subordination inequalities of a new S˘ala˘gean-difference opera- tor, Int. J. Math. Comput. Sci., 14(2019), 573-582.
Ibrahim, R.W., Elobaid, R.M., Obaiys, S.J., Generalized Briot-Bouquet differential equation based on new differential operator with complex connections, Axioms, 9(2020), 1-13. [9] Krishna, D., et al., Third Hankel determinant for bounded turning functions of order alpha, J. Nigerian Math. Soc., 34.2(2015), 121-127.
Lupa¸s Alb, A., On special differential subordinations using S˘ala˘gean and Ruscheweyh operators, Math. Inequal. Appl., 12(2009), 781-790.
Miller, S.S., Mocanu, P.T., Differential Subordinations: Theory and Applications, CRC Press, 2000.
Ruscheweyh, St., New criteria for univalent functions, Proc. Amer. Math. Soc., 49(1975), 109-115.
S˘al˘agean, G. St., Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.
Tuneski, N., Bulboaca˘, T., Sufficient conditions for bounded turning of analytic functions, Ukr. Math. J., 70.8(2019), 1288-1299.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.