A spectral criterion for the existence of the stabilizing solution of a class of Riccati type differential equations with periodic coefficients

Authors

  • Vasile DRĂGAN Institute of Mathematics ”Simion Stoilow” of the Romanian Academy, P.O.Box 1-764, RO-014700, Bucharest, Romania and the Academy of the Romanian Scientists, e-mail: Vasile.Dragan@imar.ro https://orcid.org/0000-0001-6617-1441
  • Ioan-Lucian POPA Department of Computing, Mathematics and Electronics ”1 Decembrie 1918” University of Alba Iulia, 510009 - Alba Iulia, Romania, e-mail: lucian.popa@uab.ro https://orcid.org/0000-0001-5829-7335

DOI:

https://doi.org/10.24193/subbmath.2021.1.14

Keywords:

Generalized Riccati equations, stabilizing solution, the periodic case, characteristic multipliers.

Abstract

In this paper, we investigate the existence and uniqueness of a stabilizing solution to a periodic backward nonlinear differential equation. This class of nonlinear equations includes as special cases many of the continuous-time Riccati equations arising both in deterministic and stochastic linear quadratic (LQ) type control problems.

Mathematics Subject Classification (2010): 49N10, 93E20.

References

Bittanti, S., Colaneri, P., Periodic Systems: Filtering and Control, Springer-Verlag London, 2009.

Chung, K.L., Markov Chains with Stationary Transition Probabilities, Springer, Berlin, Heidelberg, 1967.

Ciucu, G., Tudor C., Teoria Probabilitatilor si Aplicatii, Editura Stiintifica si Enciclopedica, 1983.

Daleckıı, Ju. L., Kreın, M.G., Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs, American Mathematical Society, vol. 43, 1974.

Damm, T., Hinrichsen, D., Newton’s method for concave operators with resolvent positive derivatives in ordered Banach spaces, Linear Algebra Appl., 363(2003), 2003.

Delong, L., Backward Stochastic Differential Equations with Jumps and Their Actuarial and Financial Applications, Springer-Verlag London, 2013.

Doob, J.L., Stochastic Processes, New York, Wiley, 1967.

Dragan, V., Halanay A., Stabilization of Linear Systems, Birkhauser Basel, 1999.

Dr˘agan, V., Morozan, T., Stoica, A.-M., Mathematical Methods in Robust Control of Linear Stochastic Systems, Springer-Verlag New York, 2013.

Fragoso, M.D., Costa, O.L.V., de Souza, C.E., A new approach to linearly perturbed Riccati equations arising in stochastic control, Appl. Math. Optim., 37(1998), 99-126.

Freedman, A., Stochastic Differential Equations and Applications, vol. I, Academic, New York, 1975.

Halanay, A., Differential Equations: Stability, Oscillations, Time Lags, Academic Press, vol. 23, 1966.

Kalman, R., Contributions on the theory of optimal control, Bult. Soc. Math. Mexicana Segunda Ser., 5(1960), no. 1, 102-119.

Kawano, Y., Ohtsuka, T., Nonlinear eigenvalue approach to differential Riccati equations for contraction analysis, IEEE Trans. Automat. Control, 62(2017), no. 12, 6497-6504.

Lancaster, P., Rodman, L., Algebraic Riccati Equations, Clarendon Press, Oxford, 1995.

Øksendal, B., Stochastic Differential Equations, Springer-Verlag Berlin, Heidelberg, 2003.

Pastor, A., Hernandez, V., Differential periodic Riccati equations: existence and uniqueness of nonnegative definite solutions, Math. Control Signals Systems, 6(1993), 341-362.

Qiu, L., On the generalized eigenspace approach for solving Riccati equations, In: IFAC Proceedings Volumes, 14th IFAC World Congress 1999, Beijing, China, 5-9 July, 32(1999), no. 2, 2945-2950.

Tang, S., General linear quadratic optimal stochastic control problems with random coefficients: linear stochastic Hamilton systems and backward stochastic Riccati equations, SIAM J. Control Optim., 42(2003), no. 1, 53-75.

Wonham, W.M., On a matrix Riccati equation of stochastic control, SIAM J. Control Optim., 6(1968), no. 4, 681-697.

Yakubovich, V.A., A linear-quadratic optimization problem and the frequency theorem for nonperiodic systems. I, Sib. Math. J., 27(1986), 614-630.

Zhang, J., Backward Stochastic Differential Equations: From Linear to Fully Nonlinear Theory, Springer-Verlag New York, vol. 86, 2017.

Zheng, J., Qiu, L., On the existence of a mean-square stabilizing solution to a continuous-time modified algebraic Riccati equation, In: 21st International Symposium on Mathematical Theory of Networks and Systems July 7-11, 2014, Groningen, The Netherlands, 2014, 694-700.

Downloads

Published

2021-03-30

How to Cite

DRĂGAN, V., & POPA, I.-L. (2021). A spectral criterion for the existence of the stabilizing solution of a class of Riccati type differential equations with periodic coefficients. Studia Universitatis Babeș-Bolyai Mathematica, 66(1), 159–177. https://doi.org/10.24193/subbmath.2021.1.14

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.