Capacity solution for an elliptic coupled system with lower term in Orlicz spaces
DOI:
https://doi.org/10.24193/subbmath.2025.2.07Keywords:
Perturbed coupled system, capacity solution, nonlinear elliptic equations, weak solution, Orlicz-Soblev spacesAbstract
In this paper, we will deal with the capacity solution for a nonlinear elliptic coupled system with a Leray-Lions operator Au = −div σ(x, u, ∇u) acting from Orlicz-Sobolev spaces W10LM (Ω) into its dual, where M is an N -function.
Mathematics Subject Classification (2010): 35J60, 35J66, 46E30.
Received 09 April 2024; Accepted 01 March 2025.
References
1. Aberqi, A., Bennouna, J., Elmassoudi, M., Sub-supersolution method for nonlinear elliptic equation with non-coercivity in divergentiel form in Orlicz spaces, AIP Conference Proceedings 2074, 020004 (2019).
2. Aberqi, A., Bennouna, J., Elmassoudi, M., Existence of entropy solutions in Musielak-Orlicz spaces via a sequence of penalized equations, Bol. Soc. Parana. Mat. (3s.), 38(6)(2020), 203-238.
3. Aberqi, A., Bennouna, J., Elmassoudi, M., Hammoumi, M., Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces, Monatsh. Math., 189(2019), 195-219.
4. Adams, R.A., Sobolev Spaces, New York (NY), Academic Press, 1975.
5. Aharouch, L., Bennouna, J., Existence and uniqueness of solutions of unilateral problems in Orlicz spaces, Nonlinear Anal. TMA, 72(2010), 3553-3565.
6. Azroul, E., Redwane, H., Rhoudaf, M., Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces, Port. Math. (N.S.), 66(2009), no. 1, 29-63.
7. Bahari, M., El Arabi, R., Rhoudaf, M., Capacity solution for a perturbed nonlinear coupled system, Ric. Mat., 69(1)(2020), 215-233.
8. Bass, J., Thermoelectricity, In: Parer, S.P. (ed.) Mc Graw-Hill Encyclopedia of Physics, McGraw-Hill, New York, 1982.
9. Benkirane, A., Elmahi, A., Almost everywhere convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application, Nonlinear Anal. TMA, 11(28)(1997), 1769-1784.
10. González Montesinos, M.T., Ortegón Gallego, F., Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system, Commun. Pure Appl. Anal., 6(1)(2007), 23-42.
11. Gossez, J.-P., Mustonen, V., Variational inequalities in Orlicz-spaces, Nonlinear Anal., 11(1987), 379-492.
12. Moussa, H., Ortegón Gallego, F., Rhoudaf, M. , Capacity solution to a nonlinear elliptic coupled system in Orlicz-Sobolev spaces, Mediterr. J. Math., 17(67)(2020), 1-28.
13. Xu, X., A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type, Comm. Partial Differential Equations, 18(1993), 1-21.
14. Xu, X., On the existence of bounded temperature in the thermistor problem with degeneracy, Nonlinear Anal. TMA, 42(2000), 199-213.
15. Young, J.M., Steady state Joule heating with temperature dependent conductivities, Applied scientific Research, 42(1986), 55-65.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution 4.0 International License.