STUDIES ON THE ADSORPTION OF CONGO RED ANIONIC DYE FROM SYNTHETIC AQUEOUS SOLUTIONS USING WASTE EGGSHELL BIOMASS
DOI:
https://doi.org/10.24193/subbchem.2025.4.05Keywords:
eggshell, Congo Red, adsorption, wastewater, thermodynamicsAbstract
In this study, waste eggshells (WES) were investigated as an efficient biosorbent for the removal of Congo Red (CR) dye from aqueous solutions. The adsorption performance was quantified using UV–Vis spectroscopy at 498 nm. Fourier Transform Infrared (FTIR) spectroscopy confirmed the presence of hydroxyl, carbonyl, and methylene functional groups in WES, as well as structural modifications following CR adsorption.
Batch adsorption experiments were conducted to evaluate the effects of contact time, initial dye concentration, temperature, and pH on the adsorption capacity and efficiency. The highest CR removal efficiency (98.80 %) was achieved at pH 5.94, using a solid-to-liquid ratio of 5 g/100 mL and an initial CR concentration of 97.75 mg/L. The maximum adsorption capacity of WES was determined to be 9.12 mg CR/g WES. Optimized adsorption conditions were established using 4 g WES/100 mL at 295 K, pH 5.94, and an initial concentration of 97.97 mg CR/L under static conditions.
Thermodynamic analysis revealed the spontaneous and exothermic nature of the adsorption process, as indicated by a negative enthalpy change (ΔH = −40.708 kJ mol⁻¹). These findings demonstrate the feasibility of employing waste eggshells as an effective and sustainable biosorbent for the removal of azo dyes from contaminated water.
References
1. UN World Water Development Report 2024 | UN-Water
2. J. Ambigadevi and P. Senthil Kumar, Int. J. Chem. Eng., 2025, 1, 1-19 https://doi.org/10.1155/ijce/5541488.
3. Kusumlata, B. Ambade, A. Kumar, S. Gautam, Limnol. Rev., 2024, 24(2), 126-149; https://doi.org/10.3390/limnolrev24020007.
4. K. Litefti, M.S. Freire, M. Stitou, J. G. Álvares, Nature Sci. Rep., 2019, 9, 16530; https://doi.org/10.1038/s41598-019-53046-z.
5. H. Bai, Y. Feng, C. Zhu, P. Guo, J. Wang, Y. Zhou, L. Zhang, S. Li, J. Chen, J. Taiwan Inst. Chem. Eng, 2024, 164, 105689 - 105695. https://doi.org/10.1016/j.jtice.2024.105689.
6. V. S. Mane and P.V.V. Babu, J. Taiwan Inst. Chem. Eng., 2013, 44(1), 81-88. https://doi.org/10.1016/j.jtice.2012.09.013
7. P. E. Emumejaye, S. C. Ikpeseni, M. Ekpu, S. O.-O. Sada, P. O. Ohwofadjeke, J. Sci. Technol. Res., 2023, 5(4), 128-137.
8. S. Parvin, Al-M., F. Rubbi, Md. A. Ruman, Md. M. Rahman, B. K. Biswas, Aceh. Int. J. Sci. Technol., 2020, 9(2) 63-74, https://doi: 10.13170/aijst.9.2.16767
9. M.T. Yagub, T. K. Sen, S. Afroze, H.M. Ang, Adv. Col Interface Sci, 2014, 209, 172-184, https://doi.org/10.1016/j.cis.2014.04.002.
10. S. Satyam, S. Patra, Helyion, 2024, 10(9), e29573 - 29597. https://doi.org/10.1016/j.heliyon.2024.e29573.
11. P.E. Emumejaye, S.C. Ikpeseni, M. Ekpu, S.O.O. Sada, P. Ohwofadjeke, J. Sci. Technol. Res., 2023, 5(4), 128-137.
12. R. de Oliveira Zonato, B. R. Estevam, I. D. Perez, V. A. dos Santos Ribeiro, R.F. Boina, Clean Chem. Eng., 2022, 2, 100023-100032. https://doi.org/10.1016/j.clce.2022.100023.
13. A.Soltani, M. Faramarzi, S.A. Mousavi Parsa Water Quality Res. J., 2021, 56 (4),181-193. https://doi.org/10.2166/ wqrj.2021.023.
14. R.A Nassif., J. Multidiscipl. Eng. Sci. Technol., 2019, 6(9), 10611-10613.
15. M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, J. Environ. Chem. Eng., 2014, 2(3), 1434-1444 https://doi.:10.1016/j.jece.2014.07.008.
16. M. Harja, G. Buema, D. Bucur, Nature. Sci. Reports, 2022, 12, 6087-6105. https://doi.org/10.1038/s41598-022-10093-3
17. K. M. Ravi, G. M., Wondalem, P.S. Satya, J.J. Lakshmi, A.S. Ashager, P. King, M. Vijay, G. Baburao, Chem. Methodol., 2023, 7, 605-612. https://doi.org/10.22034/CHEMM.2023.395359.1676.
18. S. Burcă, A.Măicăneanu, C. Indolean, Rev. Roum. Chim., 2014, 59(10), 817-824.
19. M.A. Abdel-Khalek, M.K. Abdel Rahman, A.A. Francis, J. Environ. Chem. Eng., 2017, 5(1), 319-327. https://doi.org/10.1016/j.jece.2016.11.043
20. N. K. Kınaytürk, B. Tunalı, D.T. Altug, R. Soc. Open Sci., 2021, 8, 210100-210114. https://doi.org/10.1098/rsos.210100
21. J. R. Njimou, A. Măicăneanu, C. Indolean, C.P. Nanseu-Njiki, E. Ngameni, Environ. Technol., 2016, 37(11), 1369–1381. http://dx.doi.org/10.1080/09593330.2015.1116609
22. N. F. Al-Harby, E. F. Albahly, N. A. Mohamed, Polymers, 2021, 13(24), 4446-4478. https://doi.org/10.3390/polym13244446
23. R. Kumar, S.A. Ansari, M.A. Barakat, A. Aljaafari, M.H. Cho, New J. Chem., 2018, 42, 18802–18809.
24. W.J. Weber, J.C. Morris, J.C., 1963) J. Sanitary Eng. Div., Am. Soc. Civil Eng., 1963, 89, 31-60.
25. Meghana, C., Juhi, B., Rampal, N., Vairavela, P., Desalination Water Treat., 2020, 207, 373–397, http//doi: 10.5004/dwt.2020.26389
26. K.Wu, X.Pan, J. Zhang, Xi. Zhang, A. Salahzene, Y. Tian, 2020, ACS Omega, 5(38), 24601-24612. https//doi.org/10.1021/acsomega.0c03114.
27. J. Wang , X. Guo, J. Hazard. Mater., 2020, 390, 122156-12274. https://doi.org/10.1016/j.jhazmat.2020.122156
28. P. S Kumar, S.J. Varjani, S. Suganya, Bioresour. Technol., 2017, 250, 716−722. https://doi.org/10.1016/j.biortech.2017.11.097
29. G.O. Ogunlusi, O.D. Amos, O.F. Olatunji, J Iran. Chem. Soc., 2023, 20, 817–830. https://doi.org/10.1007/s13738-022-02721-6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
