MINERAL ABSORBENT EFFIECIENCY ON THE PETROLEUM SPILLS REMOVAL
DOI:
https://doi.org/10.24193/subbchem.2025.3.15Keywords:
Oil spills, mineral absorbents, zeolite, claysAbstract
Mineral absorbents are of great interest for the oil spills removal. Therefore, current investigation tests the removal ability of three commercial products: Zeolit Spectrum, Favisan Clay and professional oil spills removal Adabline II OS. SEM investigation reveals that all compounds relies on small phyllosilicates particles of about 1 – 5 µm accompanied by fewer coarser fractions of 100 – 150 µm. Mineralogical optical microscopy reveals that Zeolit Spectrum and Adabline II OS contains mainly Clinoptilolite while Favisan Clay contains mostly Kaolinite (1 – 10 µm) with some traces of Biotite (5 – 30 µm). These products were tested on diesel and burnt oil spills. The gravimetric measurements reveal the best specific absorption for Clinoptilolite of about 1.26 g/g for diesel and 1.69 g/g for oil while Kaolinite has only 1.04 g/g for Diesel and 1.37 g/g for oil spill. The fact was proved by FTIR spectroscopy revealing the increase of the C=C and C-O. The absorption mechanism was observed by SEM revealing the diesel and oil penetration within the finest mineral clusters, Clinoptilolite being more efficient than Kaolinite which was slightly reluctant because of its hydrophilic nature.
References
1. S.H. Pradhan, M. Gibb, A.T. Kramer, C.M. Sayes, Environmental Research, 2023, 231(3),116267. https://doi.org/10.1016/j.envres.2023.116267
2. S.I. Bankole, M.O. Oloruntola, O.O. Bayewu, D.O. Obasaju, Kuwait Journal of Science, 2024, 51, 100133. https://doi.org/10.1016/j.kjs.2023.10.001
3. M. Nie, N. Xian, X. Fu, X. Chen, B. Li, Journal of Hazardous Materials, 2010, 174, 156-161. https://doi.org/10.1016/j.jhazmat.2009.09.030
4. M. Grifoni, I. Rosellini, P. Angelini, G. Petruzzelli, B. Pezzarossa, Environmental Pollution, 2020, 265, 114950. https://doi.org/10.1016/j.envpol.2020.114950
5. M. Abdullah, Z. Al-Ali, A. Abulibdeh, M. Mohan, S. Srinivasan, T. Al-Awadhi, Environmental Research, 2023, 219, 114955. https://doi.org/10.1016/j.envres.2022.114955
6. S. Esterhuyse, N. Redelinghuys, Patricia Charvet, P. Fearnside, V. Daga, R. Braga, W. Okello, J. Vitule, E. Verheyen, M. Van Steenberge, Effects of Hydrocarbon Extraction on Freshwaters, Editor(s): Thomas Mehner, Klement Tockner, Encyclopedia of Inland Waters (Second Edition), Elsevier, 2022, Pages 189-209. https://doi.org/10.1016/B978-0-12-819166-8.00164-X
7. A. Raposo, C. Mansilha, A. Veber, A. Melo, J. Rodrigues, R. Matias, H. Rebelo, J. Grossinho, M. Cano, C. Almeida, I.D. Nogueira, L. Puskar, U. Schade, L. Jordao, Science of The Total Environment, 2022, 850, 157983. https://doi.org/10.1016/j.scitotenv.2022.157983
8. L. Donaldson, Materials Today, 2012, 235. https://doi.org/10.1016/S1369-7021(12)70108-6
9. G. A. Păltinean, I. Petean, G. Arghir, D. F. Muntean, L.-D. Boboş, M. Tomoaia-Cotişel, Particulate Science and Technology, 2016, 34 (5), 580.
10. A. G. Hosu-Prack, I. Petean, G. Arghir, L.D. Bobos, M. Tomoaia-Cotisel, Studia UBB Chemia, 2010, 55(3), 93-104.
11. S.E. Avram, L.B.; Tudoran, G.; Borodi, I.; Petean, Appl. Sci. 2025, 15, 6445. https://doi.org/10.3390/app15126445
12. Q. Liu, Y. Yu, G. Zhu, H. Liu, C. Jiang, W. Zhang, Y. Li, Q. Xue, Y. Wan, B. Li, X. Zhang, C. Dai, Z. Wang, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 699, 134732. https://doi.org/10.1016/j.colsurfa.2024.134732
13. M. Teymourfamianasl, H. Atakül, Separation and Purification Technology,2025, 360, 131210. https://doi.org/10.1016/j.seppur.2024.131210
14. L. Bandura, M. Franus, G. Józefaciuk, W. Franus, Fuel, 2015, 147, 100-107, https://doi.org/10.1016/j.fuel.2015.01.067.
15. G. A. Păltinean, I. Petean, G. Arghir, D. F. Muntean, M. Tomoaia-Cotişel, Revista de chimie, 2016, 67 (6), 1118.
16. M. Rusca, T. Rusu, S.E. Avram, D. Prodan, G.A. Paltinean, M.R. Filip, I. Ciotlaus, P. Pascuta, T.A. Rusu, I. Petean, Atmosphere, 2023, 14, 862. https://doi.org/10.3390/atmos14050862
17. S.E. Avram, M.R. Filip, L.B. Tudoran, G. Borodi, I. Petean, Studia UBB Chemia, 2023, 68(4), 57-70. https://doi.org/10.24193/subbchem.2023.4.05
18. S.E. Avram,B.V. Birle, C. Cosma, L.B. Tudoran, M. Moldovan, S. Cuc, G. Borodi, I. Petean, Materials, 2025, 18, 1715. https://doi.org/10.3390/ma18081715
19. K. Sant, D.V. Palcu, E. Turco, A. Di Stefano, N. Baldassini, T. Kouwenhoven, K.F. Kuiper, W. Krijgsman, Data in Brief, 2019, 24, 103904. https://doi.org/10.1016/j.dib.2019.103904
20. A. Leeuw, S. Filipescu, L. Maţenco, W. Krijgsman, K. Kuiper, M. Stoica, Global and Planetary Change, 2013, 103, 82-98. https://doi.org/10.1016/j.gloplacha.2012.04.008
21. A. Maicaneanu, C. Varodi, H. Bedelean, D. Gligor, Geochemistry, 2014, 74, 653-660. https://doi.org/10.1016/j.chemer.2014.02.005
22. M. Shribak, Sci Rep, 2015, 5, 17340. https://doi.org/10.1038/srep17340
23. J.I. Núñez, J.D. Farmer, R.G. Sellar, G.A. Swayze, D.L. Blaney, Astrobology, 2013, 14, 132–169. https://doi.org/10.1089/ast.2013.1079
24. E.S. Elbanna, A.A. Farghali, M.H. Khedr, M. Taha, Journal of Molecular Liquids, 2024, 409, 125538. https://doi.org/10.1016/j.molliq.2024.125538
25. S.E. Avram, L. Barbu Tudoran, C. Cuc, G. Borodi, B.V. Birle, I. Petean, Sustainability, 2024, 16, 1123. https://doi.org/10.3390/su16031123
26. S.E. Avram, L. Barbu Tudoran, C. Cuc, G. Borodi, B.V. Birle, I. Petean, J. Compos. Sci., 2024, 8, 219. https://doi.org/10.3390/jcs8060219
27. S. Lőrincz, M.; Munteanu, S. Marincea, R.D. Roban, V.M. Cetean, G. Dincă, M. Melinte-Dobrinescu, Geosciences, 2025, 15, 256. https://doi.org/10.3390/geosciences15070256
28. M. Vlassa, M. Filip, S. Beldean-Galea, D. Thiébaut, J. Vial, I. Petean, I. Molecules, 2025, 30, 1959. https://doi.org/10.3390/molecules30091959
29. D.S.D. Lima, I.W. Zapelini, L.L. Silva, S. Mintova, L. Martins, Catalysis Today, 2024, 441, 114842. https://doi.org/10.1016/j.cattod.2024.114842
30. S.R. Hashaikeh, Materials Chemistry and Physics, 2018, 220, 322-330. https://doi.org/10.1016/j.matchemphys.2018.08.080
31. I. Msadok, N. Hamdi, S. Gammoudi, M.A. Rodríguez, E. Srasra, Materials Chemistry and Physics, 2019, 225, 279-283. https://doi.org/10.1016/j.matchemphys.2018.12.098
32. R.J. Sengwa, S. Choudhary, S. Sankhla, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 336, 79-87, https://doi.org/10.1016/j.colsurfa.2008.11.015
33. S.E. Avram, B.V. Birle, L.B. Tudoran, G. Borodi, I. Petean, Water, 2024, 16, 1027. https://doi.org/10.3390/w16071027
34. Y. Wang, A. Chen, M. Peng, D. Tan, X. Liu, C. Shang, S. Luo, L. Peng, Journal of Cleaner Production, 2019, 217, 308-316. https://doi.org/10.1016/j.jclepro.2019.01.253
35. A.B. Olabintan, T.A. Saleh, Reactive and Functional Polymers, 2024, 195, 105807. https://doi.org/10.1016/j.reactfunctpolym.2023.105807
36. S.E. Avram, L.B. Tudoran, G. Borodi, M.R. Filip, I. Petean, Sustainability, 2025, 17, 2077. https://doi.org/10.3390/su17052077
37. L. Biaktluanga, J. Lalhruaitluanga, J. Lalramnghaka, H.H. Thanga, Results in Chemistry, 2024, 8, 101575. https://doi.org/10.1016/j.rechem.2024.101575
38. A. Wolak, J. Molenda, G. Zając, P. Janocha, Measurement, 2021, 186, 110141. https://doi.org/10.1016/j.measurement.2021.110141
39. Ch. Teas, S. Kalligeros, F. Zanikos, S. Stournas, E. Lois, G. Anastopoulos, Desalination, 2001, 140, 259-264. https://doi.org/10.1016/S0011-9164(01)00375-7
40. W. Li, W. Wang, Y. Qi, Z. Qi, D. Xiong, Journal of Environmental Management, 2023, 341, 118110. https://doi.org/10.1016/j.jenvman.2023.118110.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.