MINERAL ABSORBENT EFFIECIENCY ON THE PETROLEUM SPILLS REMOVAL

Authors

  • Daniel ARGHIROPOL Faculty of Materials and Environmental Engineering, Technical University, Cluj-Napoca, Romania.
  • Tiberiu RUSU Department of Environment Engineering and Entrepreneurship of Sustainable Development, Faculty of Materials and Environmental Engineering, Technical University, Cluj-Napoca, Romania.
  • Miuța Rafila FILIP “Raluca Ripan” Institute for Research in Chemistry, Babeș-Bolyai University, Cluj-Napoca, Romania.
  • Laura SILAGHI-DUMITRESCU “Raluca Ripan” Institute for Research in Chemistry, Babeș-Bolyai University, Cluj-Napoca, Romania. https://orcid.org/0000-0001-9060-8463
  • Stanca CUC “Raluca Ripan” Institute for Research in Chemistry, Babeș-Bolyai University, Cluj-Napoca, Romania. https://orcid.org/0000-0002-9812-695X
  • Gertrud Alexandra PALTINEAN “Raluca Ripan” Institute for Research in Chemistry, Babeș-Bolyai University, Cluj-Napoca, Romania. Corresponding author: gertrud.paltinean@ubbcluj.ro https://orcid.org/0000-0002-4000-1978

DOI:

https://doi.org/10.24193/subbchem.2025.3.15

Keywords:

Oil spills, mineral absorbents, zeolite, clays

Abstract

Mineral absorbents are of great interest for the oil spills removal. Therefore, current investigation tests the removal ability of three commercial products: Zeolit Spectrum, Favisan Clay and professional oil spills removal Adabline II OS. SEM investigation reveals that all compounds relies on small phyllosilicates particles of about 1 – 5 µm accompanied by fewer coarser fractions of 100 – 150 µm. Mineralogical optical microscopy reveals that Zeolit Spectrum and Adabline II OS contains mainly Clinoptilolite while Favisan Clay contains mostly Kaolinite (1 – 10 µm) with some traces of Biotite (5 – 30 µm). These products were tested on diesel and burnt oil spills. The gravimetric measurements reveal the best specific absorption for Clinoptilolite of about 1.26 g/g for diesel and 1.69 g/g for oil while Kaolinite has only 1.04 g/g for Diesel and 1.37 g/g for oil spill. The fact was proved by FTIR spectroscopy revealing the increase of the C=C and C-O. The absorption mechanism was observed by SEM revealing the diesel and oil penetration within the finest mineral clusters, Clinoptilolite being more efficient than Kaolinite which was slightly reluctant because of its hydrophilic nature.

References

1. S.H. Pradhan, M. Gibb, A.T. Kramer, C.M. Sayes, Environmental Research, 2023, 231(3),116267. https://doi.org/10.1016/j.envres.2023.116267

2. S.I. Bankole, M.O. Oloruntola, O.O. Bayewu, D.O. Obasaju, Kuwait Journal of Science, 2024, 51, 100133. https://doi.org/10.1016/j.kjs.2023.10.001

3. M. Nie, N. Xian, X. Fu, X. Chen, B. Li, Journal of Hazardous Materials, 2010, 174, 156-161. https://doi.org/10.1016/j.jhazmat.2009.09.030

4. M. Grifoni, I. Rosellini, P. Angelini, G. Petruzzelli, B. Pezzarossa, Environmental Pollution, 2020, 265, 114950. https://doi.org/10.1016/j.envpol.2020.114950

5. M. Abdullah, Z. Al-Ali, A. Abulibdeh, M. Mohan, S. Srinivasan, T. Al-Awadhi, Environmental Research, 2023, 219, 114955. https://doi.org/10.1016/j.envres.2022.114955

6. S. Esterhuyse, N. Redelinghuys, Patricia Charvet, P. Fearnside, V. Daga, R. Braga, W. Okello, J. Vitule, E. Verheyen, M. Van Steenberge, Effects of Hydrocarbon Extraction on Freshwaters, Editor(s): Thomas Mehner, Klement Tockner, Encyclopedia of Inland Waters (Second Edition), Elsevier, 2022, Pages 189-209. https://doi.org/10.1016/B978-0-12-819166-8.00164-X

7. A. Raposo, C. Mansilha, A. Veber, A. Melo, J. Rodrigues, R. Matias, H. Rebelo, J. Grossinho, M. Cano, C. Almeida, I.D. Nogueira, L. Puskar, U. Schade, L. Jordao, Science of The Total Environment, 2022, 850, 157983. https://doi.org/10.1016/j.scitotenv.2022.157983

8. L. Donaldson, Materials Today, 2012, 235. https://doi.org/10.1016/S1369-7021(12)70108-6

9. G. A. Păltinean, I. Petean, G. Arghir, D. F. Muntean, L.-D. Boboş, M. Tomoaia-Cotişel, Particulate Science and Technology, 2016, 34 (5), 580.

10. A. G. Hosu-Prack, I. Petean, G. Arghir, L.D. Bobos, M. Tomoaia-Cotisel, Studia UBB Chemia, 2010, 55(3), 93-104.

11. S.E. Avram, L.B.; Tudoran, G.; Borodi, I.; Petean, Appl. Sci. 2025, 15, 6445. https://doi.org/10.3390/app15126445

12. Q. Liu, Y. Yu, G. Zhu, H. Liu, C. Jiang, W. Zhang, Y. Li, Q. Xue, Y. Wan, B. Li, X. Zhang, C. Dai, Z. Wang, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 699, 134732. https://doi.org/10.1016/j.colsurfa.2024.134732

13. M. Teymourfamianasl, H. Atakül, Separation and Purification Technology,2025, 360, 131210. https://doi.org/10.1016/j.seppur.2024.131210

14. L. Bandura, M. Franus, G. Józefaciuk, W. Franus, Fuel, 2015, 147, 100-107, https://doi.org/10.1016/j.fuel.2015.01.067.

15. G. A. Păltinean, I. Petean, G. Arghir, D. F. Muntean, M. Tomoaia-Cotişel, Revista de chimie, 2016, 67 (6), 1118.

16. M. Rusca, T. Rusu, S.E. Avram, D. Prodan, G.A. Paltinean, M.R. Filip, I. Ciotlaus, P. Pascuta, T.A. Rusu, I. Petean, Atmosphere, 2023, 14, 862. https://doi.org/10.3390/atmos14050862

17. S.E. Avram, M.R. Filip, L.B. Tudoran, G. Borodi, I. Petean, Studia UBB Chemia, 2023, 68(4), 57-70. https://doi.org/10.24193/subbchem.2023.4.05

18. S.E. Avram,B.V. Birle, C. Cosma, L.B. Tudoran, M. Moldovan, S. Cuc, G. Borodi, I. Petean, Materials, 2025, 18, 1715. https://doi.org/10.3390/ma18081715

19. K. Sant, D.V. Palcu, E. Turco, A. Di Stefano, N. Baldassini, T. Kouwenhoven, K.F. Kuiper, W. Krijgsman, Data in Brief, 2019, 24, 103904. https://doi.org/10.1016/j.dib.2019.103904

20. A. Leeuw, S. Filipescu, L. Maţenco, W. Krijgsman, K. Kuiper, M. Stoica, Global and Planetary Change, 2013, 103, 82-98. https://doi.org/10.1016/j.gloplacha.2012.04.008

21. A. Maicaneanu, C. Varodi, H. Bedelean, D. Gligor, Geochemistry, 2014, 74, 653-660. https://doi.org/10.1016/j.chemer.2014.02.005

22. M. Shribak, Sci Rep, 2015, 5, 17340. https://doi.org/10.1038/srep17340

23. J.I. Núñez, J.D. Farmer, R.G. Sellar, G.A. Swayze, D.L. Blaney, Astrobology, 2013, 14, 132–169. https://doi.org/10.1089/ast.2013.1079

24. E.S. Elbanna, A.A. Farghali, M.H. Khedr, M. Taha, Journal of Molecular Liquids, 2024, 409, 125538. https://doi.org/10.1016/j.molliq.2024.125538

25. S.E. Avram, L. Barbu Tudoran, C. Cuc, G. Borodi, B.V. Birle, I. Petean, Sustainability, 2024, 16, 1123. https://doi.org/10.3390/su16031123

26. S.E. Avram, L. Barbu Tudoran, C. Cuc, G. Borodi, B.V. Birle, I. Petean, J. Compos. Sci., 2024, 8, 219. https://doi.org/10.3390/jcs8060219

27. S. Lőrincz, M.; Munteanu, S. Marincea, R.D. Roban, V.M. Cetean, G. Dincă, M. Melinte-Dobrinescu, Geosciences, 2025, 15, 256. https://doi.org/10.3390/geosciences15070256

28. M. Vlassa, M. Filip, S. Beldean-Galea, D. Thiébaut, J. Vial, I. Petean, I. Molecules, 2025, 30, 1959. https://doi.org/10.3390/molecules30091959

29. D.S.D. Lima, I.W. Zapelini, L.L. Silva, S. Mintova, L. Martins, Catalysis Today, 2024, 441, 114842. https://doi.org/10.1016/j.cattod.2024.114842

30. S.R. Hashaikeh, Materials Chemistry and Physics, 2018, 220, 322-330. https://doi.org/10.1016/j.matchemphys.2018.08.080

31. I. Msadok, N. Hamdi, S. Gammoudi, M.A. Rodríguez, E. Srasra, Materials Chemistry and Physics, 2019, 225, 279-283. https://doi.org/10.1016/j.matchemphys.2018.12.098

32. R.J. Sengwa, S. Choudhary, S. Sankhla, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 336, 79-87, https://doi.org/10.1016/j.colsurfa.2008.11.015

33. S.E. Avram, B.V. Birle, L.B. Tudoran, G. Borodi, I. Petean, Water, 2024, 16, 1027. https://doi.org/10.3390/w16071027

34. Y. Wang, A. Chen, M. Peng, D. Tan, X. Liu, C. Shang, S. Luo, L. Peng, Journal of Cleaner Production, 2019, 217, 308-316. https://doi.org/10.1016/j.jclepro.2019.01.253

35. A.B. Olabintan, T.A. Saleh, Reactive and Functional Polymers, 2024, 195, 105807. https://doi.org/10.1016/j.reactfunctpolym.2023.105807

36. S.E. Avram, L.B. Tudoran, G. Borodi, M.R. Filip, I. Petean, Sustainability, 2025, 17, 2077. https://doi.org/10.3390/su17052077

37. L. Biaktluanga, J. Lalhruaitluanga, J. Lalramnghaka, H.H. Thanga, Results in Chemistry, 2024, 8, 101575. https://doi.org/10.1016/j.rechem.2024.101575

38. A. Wolak, J. Molenda, G. Zając, P. Janocha, Measurement, 2021, 186, 110141. https://doi.org/10.1016/j.measurement.2021.110141

39. Ch. Teas, S. Kalligeros, F. Zanikos, S. Stournas, E. Lois, G. Anastopoulos, Desalination, 2001, 140, 259-264. https://doi.org/10.1016/S0011-9164(01)00375-7

40. W. Li, W. Wang, Y. Qi, Z. Qi, D. Xiong, Journal of Environmental Management, 2023, 341, 118110. https://doi.org/10.1016/j.jenvman.2023.118110.

Downloads

Published

2025-09-24

How to Cite

ARGHIROPOL, D., RUSU, T., FILIP, M. R., SILAGHI-DUMITRESCU, L., CUC, S., & PALTINEAN, G. A. (2025). MINERAL ABSORBENT EFFIECIENCY ON THE PETROLEUM SPILLS REMOVAL. Studia Universitatis Babeș-Bolyai Chemia, 70(3), 213–226. https://doi.org/10.24193/subbchem.2025.3.15

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.