EFFECT OF ABLATION ENVIRONMENT ON THE CHARACTERISTICS OF GRAPHENE NANOSHEETS PRODUCED BY LASER ABLATION
Keywords:
Pulsed laser ablation, Graphene, Carbon nanostructures, liquid nitrogen, TEMAbstract
The effect of ablation environment on the characteristics of graphene sheets produced by the laser ablation method in liquid medium has been studied experimentally and reported here. Graphene sheets were synthesized by using Q-switch Nd-YAG laser at 532 nm wavelength and 7 ns pulse width and laser fluence of 0.5 J/cm2 in liquid nitrogen and distilled water environments. The structure and morphology of the ablation products are characterized by X-ray diffraction method, UV-Visible absorption spectroscopy, transmission electron microscopy (TEM), Raman and Fourier transform infrared spectroscopy (FTIR). Results indicate that the graphene nanosheets synthesized by the laser ablation method in liquid nitrogen environment have larger sp2 carbon domains and minor structural defects. Therefore, in our experimental conditions, the liquid nitrogen environment seems to be a better medium for producing graphene sheets with high quality, in comparison with the water.
References
M.J. Allen, V.C. Tung, and R.B. Kaner, Chem. Rev., 2009,110, 132-145.
Y. LI, N. CHOPRA, the Minerals, Chemical Methods, 2015, 67(1), 34.
Z.T. Luo, P.M. Vora, E.J. Mele, A.T.C. Johnson, J.M. Kikkawa, Appl. Phys. Lett. 2009, 94, 111909.
H.S. Park, J.A. Rowehl, K.K. Kim, V. Bulovic, and J. Kong, Nanotechnology 2010, 21, 505204.
J.J. Liang, Y. Huang, J.Y. Oh, M. Kozlov, D. Sui, S.L. Fang, R.H. Baughman, Y.F. Ma, Y.S. Chen, Adv. Funct. Mater., 2011, 21, 3778-3784.
H.J. Xu, W.B. Lu, Y. Jiang, and Z.G. Dong, Appl. Phys. Lett., 2012, 100, 051903.
A. Salehi-Khojin, D. Estrada, K.Y. Lin, K. Ran, R.T. Haasch, J.-M. Zuo, E. Pop, and R.I. Masel, Appl. Phys. Lett., 2012, 100, 033111.
B. Song, G. Cuniberti, S. Sanvito, and H.P. Fang, Appl. Phys. Lett., 2012, 100, 063101/1-4.
J.B. Wu, M. Agrawal, H.A. Becerril, Z.A. Bao, Z.F. Liu, Y.S. Chen, P. Peumans, ACS Nano, 2010, 4, 43.
N. Tabatabaie, D. Dorranian, Appl. Phys. A, 2016, 122, 558.
M. Morad, E. Solati, S. Darvishi, D. Dorranian, Cluster Sci., 2016, 27, 127.
Z. Mortazavi, P. Parvin, A. Reyhani, Laser Phys. Lett, 2012, 9, 547.
H. Sadeghi, D. Dorranian, Theor Appl Phys, 2016, 10, 7.
E.Solati, D. Dorranian, Appl. Phys. B, 2016, 122, 76.
J. Ding, M. Wang, X .Zhang, Z. Yang, X. Song, Ch. Ran, SCI, 2014, 416, 289.
C. Casiraghi, Phys. Rev. B, 2009, 80, 233407.
A. Aregahegn Dubale., Su Wei-Nien, A. G. Tamirat, Ch.J. Pan, B. A. Aragaw,
H-M.-Chen, Ch-H Chen, B.J. Hwang, Mater. Chem. A, 2014, 2, 18383.
A. Kaniyoor, S. Ramaprabhu, AIP Advances, 2012, 2, 032183.
J. Jiang, R. Pachter, F. Mehmood, A.E. Islam, B. Maruyama, J.J. Boeck, A, carbon, 2015, 90, 53.
S. Kimiagar, N. Rashidi, Advanced Research, 2015, 3, 153.
Y. Kawashima, G. Katagiri, Physical Review B, 1995, 52, 10053.
T.V. Cuong, V.H. Pham, E.W. Shin, J.S. Chung, S.H. Hur, E. J. Kim, Q.T. Tran, H.H. Nguyen, P.A. Kohl, Applied Physics Letters, 2011, 99, 041905.
M. Shafiei, P.G. Spizzirri, R. Arsat, J. Yu, J.D. Plessis, S. Dubin, R.B. Kaner, K. Kalantar-zadeh, and W. Wlodarski, J. Phys. Chem. C, 2010, 114, 13796.
A.C. Ferrari, Solid State Commun., 2007, 143, 47.
R.J. Sereshta, M. Jahanshahia, A. Rashidi, A.A. Ghoreyshia, APPL SURF SCI, 2013, 276, 672.
S. Berciaud, S. Ryu, L.E. Brus, T.F. Heinz, Nano Lett.,2009, 9, 346.
O. Akyıldırım, H. Medetalibeyoğlu, S. Manap, M. Beytur, FS. Tokalı, ML. Yola, N. Atar, Electro.chem. Sci., 2015,10, 7743.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.