Vickers Microhardness and Structural Evaluation of Experimental Dental Porcelain With Zirconia Addition

Authors

  • Sorina MOLDOVAN Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania.
  • Marieta MUREȘAN-POP Institute of Interdisciplinary Research on Bio-Nano-Sciences; INSPIRE Research Platform, Babeş-Bolyai University, Cluj-Napoca, Romania. https://orcid.org/0000-0003-4460-9654
  • Claudia Andreea COJAN Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
  • Réka BARABÁS Department of Chemistry and Chemical Engineering, Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: reka.barabas@ubbcluj.ro. https://orcid.org/0000-0001-6730-084X
  • Liliana BIZO Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: lbizo@chem.ubbcluj.ro https://orcid.org/0000-0002-8775-8492

DOI:

https://doi.org/10.24193/subbchem.2024.4.01

Keywords:

dental porcelain, zirconia, structural analyses, Vickers microhardness

Abstract

This work aimed to investigate the effect of ZrO2 addition on the structural and mechanical properties of an experimental dental porcelain (DP) prepared from natural raw materials. ZrO2 was added in different amounts (1, 3, and 5 wt.%) to the DP mass with the initial composition of 80 wt.% feldspar, 15 wt.% quartz, and 5 wt.% kaolin, obtained by sintering the mixture at 1200 ºC. The raw materials and raw materials mixture were analyzed by laser diffraction to obtain the typical particle size distribution (PSD). Subsequently, the obtained phases in the elaborated samples were investigated by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and microhardness tests. The structural analyses revealed that the obtained DP mainly comprised quartz and amorphous phases. In addition, certain peaks of weak corresponding to mullite and zirconia were detected. The measured Vickers microhardness (VMH) of DP sintered at 1200 °C was 794.07±106.56 kgf/mm2, which is comparable with those reported for conventional porcelains. Moreover, ZrO2 addition leads to an overall increase of the VMH, with the best value of 912.91±30.76 kgf/mm2 obtained for the sample with 5 wt.% ZrO2. In conclusion, the DP studied here exhibits good mechanical properties and could be potentially used in restorative dentistry.

References

1. I. Naert, 2017. In Comprehensive Biomaterials II, Materials in Fixed Pros-thodontics for Indirect Dental Restorations, P. Ducheyne Ed.; Elsevier, pp. 467-481.

2. E. A. Mclaren; P. T. Cao; Inside Dentistry, 2009, 5(9), 94-105.

3. G. A. Helvey; Inside Dentistry, 2013, 9(4), 62-76.

4. E. H. J. Lugwisha; S. I. Siafu; Int. J. Dev. Res., 2014, 4, 11, 2260-2265.

5. J. P. Moffa; Adv. Dent. Res, 1988, 2(1), 3-6.

6. A. Harabi; F. Guerfa; E. Harabi; M.-T. Benhassine; L. Foughali; S. Zaiou; Mat. Sci. Eng. C, 2016, 65, 33-42.

7. G. W. Ho; J. P. Matinlinna; Silicon, 2011, 3, 109-115.

8. E. Bajraktarova-Valjakova; A. Grozdanov; Lj. Guguvcevski; V. Korunoska-Stevkovska; B. Kapusevska; N. Gigovski; A. Mijoska; C. Bajraktarova Misevska, Open Access Maced. J. Med. Sci., 2018, 6(3), 568-573.

9. B. W. Darvell, 2009. In Materials science for dentistry, 8th ed., CRC Press LLC, Boca Raton, FL, pp. 547-567.

10. J. F. McCabe; A. W. G. Walls, 2008. In Applied dental materials, 9th ed., Blackwell Publishing Ltd., Oxford, UK, pp. 89-100.

11. L. M. Uehara; I. Ferreira; A. L. Botelho; M. L. D. C. Valente; A. C. D. Reis; Dent. Mater., 2022, 38(6), e174-e180.

12. I. Ferreira; C. L. Vidal; A. L. Botelho; P. S. Ferreira; M. L. C. Valente; M. A. Schiavon; O. L. Alves; A. C. dos Reis; J. Prosthet. Dent., 2020, 123(3), 529.e1-529.e5.

13. L. Vidal; I. Ferreira; P. Ferreira; M. Valente; M. Teixeira; A. Reis; Antibiotics, 2021, 10(2), 1-13.

14. B. E. Sakhkhane; M. Mureșan-Pop; L. Barbu-Tudoran; T. Lovász; L. Bizo; Crystals, 2024, 14(7), 616.

15. M. M. Salman, S. M. Badr, H. T. Nhabih, The Iraqi Journal for Mechanical and Materials Engineering, 2024, 23(1), 1–10.

16. D. W. Jones, J. Can. Dent. Assoc., 1998, 64, 648-650.

17. I. M. Hamouda; N. A. El-Waseffy, A. M. Hasan; A. A. El-Falal; J. Mech. Be-hav. Biomed. Mater., 2010, 3(8), 610-618.

18. M. A. Kaiyum; A. Ahmed; M. H. Hasnat; S. Rahman; J. Korean Ceram. Soc., 2021, 58, 42-49.

19. A. Harabi; S. Kasrani; L. Foughali; I. Serradj; M. T. Benhassine; S. Kitouni; Ceram. Int., 2017, 43(7), 5547-5556.

20. R. L. P. Santos; F. S. Silva; R. M. Nascimento; F. V. Motta; J. C. M Souza; B. Henriques; Ceram. Int., 2016, 42, 14214-14221.

21. I. Serragdj; A. Harabi; S. Kasrani; L. Foughali; N. Karboua. J. Aust. Ceram. Soc., 2019, 55, 489-499.

22. I. Teoreanu, N. Ciocea, A. Barbulescu, N. Ciontea, In Tehnologia pro-duselor ceramice și refractare Vol.1, Tehnologia produselor ceramice (In Romanian), Ed. Tehnică, 1985, pp. 494-496.

23. E. Kamseu; C. Leonelli; D. N. Boccaccini; P. Veronesi; P. Miselli; G. Pella-cani; U. Chinje Melo; Ceram. Int. 2007, 33, 851-857.

24. M. J. Jackson; B. Mills; Br. Ceram. Trans. 2001, 100, 1-8.

25. N.G. Holmstroem; Am. Ceram. Soc. Bull. 1981, 60, 470-473.

26. F. Kooli; L. Yan; S. X. Tan; J. Zheng; J Therm. Anal. Calorim. 2014, 115, 1465-1475.

27. P. Komadel; Clay Miner., 2003, 38, 127-138.

28. M. Todea; M. Muresan-Pop; A. Vulpoi; S. Simon; D. Eniu; Appl. Surf. Sci., 2018, 457, 838-845.

29. Y. Liu; F. Zeng; B. Sun, P. Jia; I. T Graham; Minerals, 2019, 9, 358.

30. S. Kieffer; Rev. Geophys. Space Phys., 1979, 17, 20-34.

31. Y. Sawadog; M. Sawadogo; M. Ouédraogo; M. Seynou; G. Lecomte-Nana; P. Blanchart; M. Gomina; L. Zerbo; J. Mat. Sci. Chem. Eng., 2022, 10, 41-58.

32. S. Yilmaz; Z. Engin Erkmen; Am. Ceram. Soc. Bull., 2007, 86, 9301-9034.

33. B. T. Leun; J. K. Tsoi; J. P. Matinlinna; E. H. Pow; J. Prosthet. Dent., 2015, 114, 440-446.

34. R. S. Asaad; S. Salem; Egypt. Dent. J., 2012, 67, 485-495.

35. S. Kitouni; A. Harabi, Cerâmica, 2011, 57, 453-460.

36. I. Kimura; N. Hotta; K. Sato; N. Saito; S. Yasukawa; Ceram. Int., 1988, 14(4), 217-222.

37. G. E. Monasky; D. F. Taylor; J. Prosthet. Dent., 1971, 25, 299-306.

38. R. M. Fisher; B. K. Moore; M. L. Swartz; R. W. Dykema; J. Prosthet. Dent. 1983, 50, 627-631.

39. K. J. Chun; H. H. Choi; J. Y. Lee; J. Dent. Biomech. 2014, 5, 1-6.

40. R. Z. Alshali; M. A. Alqahtani; Materials, 2022, 15, 5948.

Downloads

Published

2024-12-18

How to Cite

MOLDOVAN, S., MUREȘAN-POP, M., COJAN, C. A., BARABÁS, R., & BIZO, L. (2024). Vickers Microhardness and Structural Evaluation of Experimental Dental Porcelain With Zirconia Addition. Studia Universitatis Babeș-Bolyai Chemia, 69(4), 7–20. https://doi.org/10.24193/subbchem.2024.4.01

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.