REMOVAL OF COPPER FROM DILUTED AQUEOUS SOLUTIONS USING AN IMINODIACETIC ACID CHELATING ION-EXCHANGE RESIN IN A FIXED-BED COLUMN
Keywords:
Copper removal, Fixed-bed column, Kinetics, RegenerationAbstract
In this study, the copper removal was investigated in a fixed-bed column using a iminodiacetic acid chelating ion exchange resin (Purolite S930Plus). The influence of the resin bed height (3-6 cm) over the removal process was evaluated at a flow rate of 5 mL/min and initial Cu(II) concentration of 0.8 mM. The obtained results were analysed by linear regression using the most common sorption kinetic models such as Yoon-Nelson, Adam-Bohart, and Clark. The experimental data were in good agreement with Yoon and Nelson model. Also, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were employed to study the morphologies and the composition of the resin surface before and after sorption. The column regeneration studies were performed using 3 N H2SO4 solution. The tested resin presented a good regeneration capacity and can be successfully used to remove copper ions from diluted wastewaters.
References
R.R. Crichton, Biological Inorganic Chemistry. An Introduction, Elsevier, 2008, 241.
M. Mihaly, A.F. Comanescu, E.A. Rogozea, A. Meghea, Molecular Crystals and Liquid Crystals, 2010, 523, 63.
N.N. Maximous, G.F. Nakhla, W.K. Wan, Science, Engineering and Technology, 2010, 40, 599.
R.W. Gaikwad, V.S. Sapkal, R.S. Sapkal, Acta Montan. Slovaca, 2010, 15, 298.
S.A. Dorneanu, B. Ferencz-László, P. Ilea, Studia UBB Chemia, 2008, 1, 97.
G. Tiravanti, D. Petruzelli, R. Passino, Water Science and Technology, 1997, 36(2), 197.
S. Rengaraj, K.H. Yeon, S.H. Moon, Journal of Hazardous Materials, 2001, 87(1), 273.
Q. Yang, Y. Zhong, X. Li, X. Li, K. Luo, X. Wu, H. Chen, Y. Liu, G. Zeng, 2015 in press, doi:10.1016/j.jiec.2015.01.022.
S. Kundu, A. Gupta, Journal of Colloid and Interface Science, 2005, 290, 52.
S. Mossa Hosseini, B. Ataie-Ashtiani, M. Kholghi, Desalination, 2011, 276, 214.
L. Monser, N. Adhoum, Separation and Purification Technology. 2002, 26, 137.
P. Suksabye, P. Thiravetyan, W. Nakbanpote, Journal of Hazardous Materials, 2008, 160, 56.
E.R. Monazam, J. Spenik, L.J. Shadle, Chemical Engineering Journal, 2013, 223, 795.
X. Sun, T. Imai, M. Sekine, T. Higuchi, K. Yamamoto, A. Kanno, S. Nakazono, Journal of Industrial and Engineering Chemistry, 2014, 20, 3623.
M.A. Acheampong, K. Pakshirajan, A.P. Annachhatre, P.N.L. Lens, Journal of Industrial and Engineering Chemistry, 2013, 19, 841.
H.P. Chao, C.C. Chang, A. Nieva, Journal of Industrial and Engineering Chemistry, 2014, 20, 3408.
O. Hamdaoui, Journal of Hazardous Materials, 2009, 161, 737.
E. Gîlcă, A. Măicăneanu, P. Ilea, Water Science & Technology, 2015, 71(11), 1646.
Y.S. Al-Degs, M.A.M. Khraisheh, S.J. Allen, M.N. Ahmad, Journal of Hazardous Materials, 2009, 165, 944
B. Kiran, A. Kaushik, Chemical Engineering Journal, 2008, 144, 391.
M. Mureseanu, N. Cioatera, I. Trandafir, I. Georgescu, F. Fajula, A. Galarneau, Microporous and Mesoporous Materials, 2011, 146, 141.
C. Xiong, Y. Li, G. Wang, L. Fang, S. Zhou, C. Yao, Q. Chen, X. Zheng, D. Qi, Y. Fu, Y. Zhu, Chemical Engineering Journal, 2015, 259, 257.
B. Cheknane, M. Baudu, J. P. Basly, O. Bouras, F. Zermane, Chemical Engineering Journal, 2012, 209, 7.
M.M. Sekhula, J.O. Okonkwo, C.M. Zvinowanda, N.N. Agyei, A.J. Chaudhary, Chemical Engineering and Processing, 2012, 3(2), 1.
A.A. Ahmad, B.H. Hameed, Journal of Hazardous Materials, 2010, 175, 298.
I. Bleotu, S.A. Dorneanu, M. Mureşeanu, E. Gîlcă, P. Ilea, Revista de Chimie. (Bucharest), 2015, 66(6), 797.
www.purolite.com/RelID/619508/isvars/default/purolite%C2%AE_s910.htm.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.