ON SOME TOPOLOGICAL INDICES OF THE GENERALIZED HIERARCHICAL PRODUCT OF GRAPHS
Keywords:
Generalized hierarchical product, Cartesian product, Revised Szeged index, Zagreb indicesAbstract
The generalized hierarchical product of graphs was introduced very recently by L. Barriére et al. In this paper, revised Szeged and new version of Zagreb indices of generalized hierarchical product of two connected graphs are obtained. Using the results obtained here, some known results are deduced as corollaries. Finally, we obtain the Sz*, M*1 and M*2 indices of the zig-zag polyhex nanotube TUHC6[2n, 2], linear phenylene Fn, hexagonal chain Ln and truncated cube as a consequence of our results.
References
S. Klavžar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett., 1996, 9, 45.
M. Tavakoli, F. Rahbarnia, A.R. Ashrafi, Further results on hierarchical product of graphs, Discrete Appl. Math., 2013, 161, 1162.
M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi and S.G. Wagner, Some new results on distance-based graph invariants, European J. Combin., 2009, 30, 1149.
T. Pisanski, M. Randić, Use of the Szeged index and the revised Szeged index for measuring network bipartivity, Discrete Appl. Math., 2010, 158, 1936.
M. Randić, On generalization of Wiener index for cyclic structures, Acta Chim. Slovenica, 2002, 49, 483.
R. Xing, B. Zhou, On the revised Szeged index, Discrete Appl. Math., 2011, 159, 69.
I. Gutman, N. Trinajstic, Graph theory and molecular orbitals. Total л-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 1972, 17, 535.
I. Gutman, B. Ruscic, N. Trinajstic, C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 1975, 62, 3399.
M. Ghorbani and M.A. Hosseinzadeh, A New Version of Zagreb Indices, Filomat, 2012, 1, 93.
A.R. Ashrafi, M. Saheli, M. Ghorbani, The eccentric connectivity index of nanotubes and anotori, J. Comput. Appl. Math., 2011, 235, 4561.
L. Barriére, F. Comellas, C. Dafló, M.A. Fiol, The hierarchical product of graphs, Discrete Appl. Math., 2009, 157, 36.
L. Barriére, F. Comellas, C. Dafló, M.A. Fiol and M. Mitjana The generalized hierarchical product of graphs, Discrete Math., 2009, 309, 3871.
R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second edition, Taylor Francis Group, 2011, chapter 5.
M. Tavakoli, H. Yousefi-Azari, A.R. Ashrafi, Note on edge distance-balanced graphs, Trans. Combin., 2012, 1, 1.
M. Eliasi, A. Iranmanesh, The hyper-Wiener index of the generalized hierarchical product of graphs, Discrete Appl. Math., 2011, 159, 866.
M.V. Diudea, Polyhex tori originating in square tori. In: M.V. Diudea, Ed., Nanostructures-Novel Architecture, NOVA, New York, 2005, 111.
M.V. Diudea, M. Stefu, B. Parv, and P.E. John, Wiener index of armchair polyhex nanotubes. Croat. Chem. Acta, 2004, 77, 111.
P.E. John and M.V. Diudea, Wiener index of zig-zag polyhex nanotubes, Croat. Chem. Acta, 2004, 77, 127.
M. Arezoomand, B. Taeri, Applications of generalized hierarchical product of graphs in computing the Szeged index of chemical graphs, MATCH Commun. Math. Comput. Chem., 2010, 64, 591.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.