CHANGES IN TOTAL PHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF GREEK TABLE OLIVE CULTIVAR AMFISSIS DURING MATURATION
DOI:
https://doi.org/10.24193/subbchem.2017.2.31Keywords:
Antioxidant activity FRAP; Olives, Amfissis; Total phenolsAbstract
The Amfissis cultivar olive fruits grown in the region of Larissa, central Greece, were studied for the changes in total polyphenol content, phenolic fractions and antioxidant capacity during maturation period (four months). It has been established that the total phenol content and antioxidant capacity, change in broad ranges depending on the ripening stage of fruits. The content of total phenols in the Amfissis cultivar during maturation varied from 3.9 to 11.9 mg (GAE) g-1 FW. The highest content of total phenols has been found in the harvest stage (December). The content of flavonoid phenols ranges from 3.12 to 9.47 mg (GAE) g-1 FW. The highest content of flavonoid phenols was determined the time period of the harvesting. The content of non-flavonoid phenols during ripening of olive fruit ranges from 0.78 to 2.43 mg (GAE) g-1 FW. The highest content of NFP was determined the time period of the harvesting (black color). The inhibition concentration (IC50) of extract during maturation of the olive fruit in all stages ranges from (735 to 130) mg/l. The lowest inhibition concentration (highest antioxidant capacity) was observed in the collection stage of the olive fruits. The obtained results have a direct impact on the harvesting date of the table cultivar Amfissis, influencing the sensory properties and the quality of the olive fruit.
References
N. Gougoulias, Oxidation Communications, 2014, 37 (3), 713-721.
N. Gougoulias, P. Vyrlas, L. Giurgiulescu, D. Kalfountzos, F. Eugenia, Carpathian Journal of Food Science and Technology, 2015, 7(4), 119-125.
N, Gougoulias, A. Papachatzis, I. Vagelas, L. Giurgiulescu, A. Karaboula, D. Kalfountzos, Studia UBB Chemia,2016, LXI, 4, 295 – 303.
D. Boskou, F. Visioli, Metabolic and technological aspects, 2003, 161-169.
M. Bouaziz, R.J. Grayer, M.S. Simmonds, M. Damak, S. Sayadi, Journal of agricultural and food chemistry, 2005,53(2), 236-241.
A. Dağdelen, G. Tümen, M.M. Özcan, E. Dündar, Food chemistry, 2013, 136(1), 41-45.
S. Silva, L. Gomes, F. Leitao, A.V. Coelho, L.V. Boas, Food Science and Technology International, 2006, 12(5), 385-395.
M. Brenes, L. Rejano, P. Garcia, A.H. Sanchez, A. Garrido, Journal of Agricultural and Food Chemistry, 1995, 43(10), 2702-2706.
M. Esti, L. Cinquanta, E. La Notte, Journal of Agricultural and Food Chemistry, 1998, 46(1), 32-35.
F. Visioli, S. Bellosta, C. Galli, Life sciences, 1998, 62(6), 541-546.
R.W. Owen, R. Haubner, G. Würtele, W.E. Hull, B. Spiegelhalder, H. Bartsch,. European Journal of Cancer Prevention, 2004,13(4), 319-326.
E. Tripoli, M. Giammanco, G. Tabacchi, D. Di Majo, S. Giammanco, M. La Guardia, Nutrition research reviews, 2005, 18(01), 98-112.
M. Bouaziz, M. Chamkha, S. Sayadi, Journal of agricultural and food chemistry, 2004, 52(17), 5476-5481.
R.Briante, M. Patumi, S. Limongelli, F. Febbraio, C. Vaccaro, A. Di Salle, F. La Cara, R. Nucci, Plant Science, 2002, 162(5), 791-798.
D. Ryan, M. Antolovich, P. Prenzler, K. Robards, S. Lavee, Scientia Horticulturae, 2002, 92(2), 147-176.
M. Bouaziz, H. Jemai, W. Khabou, S. Sayadi, Journal of the Science of Food and Agriculture, 2010, 90(10), 1750-1758.
R. Fernandez-Orozco, M. Roca, B. Gandul-Rojas, L. Gallardo-Guerrero, Journal of Food Composition and Analysis, 2011, 24(6), 858-864.
G. Menz, F. Vriesekoop, Physical and chemical changes during the maturation of Gordal Sevillana olives (Olea europaea L., cv. Gordal Sevillana). Journal of agricultural and food chemistry, 2010, 58(8), 4934-4938.
J. R. Morelló, M. P. Romero, M. J. Motilva, Journal of agricultural and food chemistry, 2004, 52(19), 6002-6009.
D. Ryan, K. Robards, S. Lavee, Changes in phenolic content of olive during maturation. International journal of food science & technology, 1999,34(3), 265-274.
N. Damak, M. Bouaziz, M. Ayadi, S. Sayadi, M. Damak, Journal of agricultural and food chemistry, 2008, 56(5), 1560-1566.
A. Petridis, I. Therios, G. Samouris, HortScience, 2012, 47(3), 339-342.
G. Boskou, F.N. Salta, S. Chrysostomou, A. Mylona, A. Chiou, N.K. Andrikopoulos, Food Chemistry, 2006, 94(4), 558-564.
G. Rigane, R.B. Salem, S. Sayadi, M. Bouaziz, Journal of food science, 2011, 76(7), C965-C973.
M. Varian, Flama Atomic Absorption Spectroscopy. Analytical Methods. Varian Australia. Publ. N0: 85-100009-00, 1989.
A. L. Page, Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, 1982.
V.L. Singleton, J.A. Rossi, American journal of Enology and Viticulture, 1965, 16(3), 144-158.
B. Baderschneider, D. Luthria, A.L. Waterhouse, P. Winterhalter, VITIS-Journal of Grapevine Research, 2015, 38(3), 127-131.
T. E. Kramling, V. L. Singleton, American Journal of Enology and Viticulture, 1969, 20(2), 86-92.
W. Brand-Williams, M.E. Cuvelier, C.L.W.T. Berset, Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT- Food Science and Technology, 1995, 28(1), 25-30.
B.F. Ryan, B.L. Joiner, J.D. Cryer MINITAB Handbook: Updated for release 14, 5th edition, 2005.
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.