ELECTROCHEMICAL OXIDATION OF 10H-PHENOTHIAZINE-1-CARBOXYLIC ACID

Authors

  • Ana-Maria SĂCARĂ Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Corresponding author: limur@chem.ubbcluj.ro. https://orcid.org/0000-0002-9458-0805
  • Castelia CRISTEA Faculty of Chemistry and Chemical Engineering, “Babeș-Bolyai” University, Cluj-Napoca, Romania. Email: castelia.cristea@ubbcluj.ro. https://orcid.org/0000-0003-1138-2596
  • Tamás LOVÁSZ Department of Chemisty and Chemical Engineering in Hungarian Language, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: tlovasz@chem.ubbcluj.ro. https://orcid.org/0000-0003-2923-7442
  • Dan Ioan PORUMB Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. ioan.porumb@ubbcluj.ro. https://orcid.org/0000-0001-6388-2686
  • Éva MOLNÁR Institute of Chemical and Process Engineering, Department of Chemical Engineering Science, University of Pannonia, Veszprém, Hungary. Email: molnare@almos.uni-pannon.hu.

DOI:

https://doi.org/10.24193/subbchem.2017.4.10

Keywords:

10H-phenothiazine-1-carboxylic acid, SWASV, intramolecular hydrogen bonds

Abstract

The electrochemical behavior of 10H-phenothiazine-1-carboxylic acid was investigated by square wave anodic stripping voltammetry (SWASV) at a glassy carbon electrode, which evidenced the first monoelectronic oxidation step at low potentials (around 0.25 V), slightly modulated by the nature of the solvent. The effect of three different solvents (acetonitrile, dimethyl sulfoxide and chloroform) on the strength of intramolecular hydrogen bonding associations was evidenced by DFT calculations. The computed electron density at the heterocyclic nitrogen atom appeared well correlated to the recorded oxidation potential. The possibility of using 10H-phenothiazine-1-carboxylic acid as potential mediator for electrochemical detection of Malachite Green was explored, but the phenothiazine derivative appeared not suitable for the detection of the dye.

References

K. Madej, P. Koscielniak, Critical Reviews in Analytical Chemistry, 2008, 38 50.

K. Nesměrák V. Červený, J. Hraníček, P. Rychlovský, Microchemical Journal, 2013, 106. 226.

H. Puzanowska-Tarasiewicz, L. Kuzmicka, J. Karpinska, K. Mielech-Lucasiewicz, Analytical Sciences, 2005, 21, 1149.

A.N. Sekretaryova, M.Yu. Vagin, V. Beni, A.P.F. Turner, A.A. Karyakin, Biosensors and Bioelectronics, 2014, 53, 275;

J. Kulysa, T. Buch-Rasmussenb, K. Bechgaard, V. Razumasa, Journal of Molecular Catalysts, 1994, 91, 407.

T Hoshino, S. Sekiguchi, H. Muguruma, Bioelectrochemistry, 2012, 84, 1.

B. Brunetti, P. Ugo, L.M. Moretto, C.R. Martin, Journal of Electroanalytical Chemistry, 2000, 491, 166.

H. Dai, H. Xu, X. Wu, Y. Lin, M. Wei, G. Chen, Talanta, 2010, 81, 1461.

V.B. Kataria, M.J. Solanki, A.R. Trivedi, V.H. Shah, Letters in Drug Design & Discovery, 2013, 10(10), 951.

A. Sacara, C. Cristea, L.M. Muresan, Journal of Electroanalytical Chemistry, 2017, 792, 23.

J.L. Cook, C.A. Hunter, C.M.R. Low, A. Perez-Velasco, J.G. Vinter. Angewandte Chemie International Ed., 2007, 46, 3706.

Downloads

Published

2017-12-29

How to Cite

SĂCARĂ, A.-M., CRISTEA, C., LOVÁSZ, T., PORUMB, D. I. ., & MOLNÁR, Éva . (2017). ELECTROCHEMICAL OXIDATION OF 10H-PHENOTHIAZINE-1-CARBOXYLIC ACID. Studia Universitatis Babeș-Bolyai Chemia, 62(4, Tome I), 121–128. https://doi.org/10.24193/subbchem.2017.4.10

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.