PREPARATION AND CHARACTERIZATION OF HYDROXYAPATITE BASED NANO-COMPOSITE BIOMORPHIC IMPLANTS
DOI:
https://doi.org/10.24193/subbchem.2018.3.11Keywords:
biomorphic implants, hydroxyapatite, gelatin, carbon nanotubes, ibuprofenAbstract
The aim of this study was the preparation and characterization of different biomorphic implants based on calcined cattle bones coated with hydroxyapatite (Hap) based nanocomposites in different ratios. For comparison, molded nanocomposites were also produced as biomorphic implants. The obtained nanocomposite/implants were characterized using X-ray diffraction, light microscopy and scanning electron microscopy, Brunauer-Emmett-Teller surface area and apparent porosity. The release of Ca and P in simulated body fluid was monitored by X-ray fluorescence. The adsorption capacity and extended-release dosage of implants were investigated with ibuprofen, an anti-inflammatory drug, by UV-VIS spectroscopy. The highest adsorption efficiency and stability were obtained for sintered (S) (Hap-) and 20% gelatin (G) nanocomposite (Hap-20G-S) and bone parts coated with Hap-S and Hap-20G-S nanocomposite, respectively. The best results (high adsorption efficiency and slow release - low desorption capacity) were obtained for molded Hap-20G-S composite, without bone. In summary, the cattle bones with hydroxyapatite coatings show great promise in production of inexpensive and patient-specific bone implants.
References
O. Gryshkov, N.I. Klyui, V.P. Temchenko, V.S. Kyselov, A. Chatterjee, A.E. Belyaev, L. Lauterboeck, D. Iarmolenko, B. Glasmacher, Materials Science and Engineering C, 2016, 68, 143.
A.I. Pearce, R.G. Richards, S. Milz, S.G. Pearce, European Cells & Materials, 2007, 13, 1.
Y. Li, S.K. Chen, L. Li, L. Qin, X.L. Wang, Y.X. Lai, Journal of Orthopaedic Research, 2015, 3, 95.
G. Filardo, E. Kon, A. Tampieri, R. Cabezas-Rodriguez, A. Di Martino, M. Fini, G. Giavaresi, M. Lelli, J. Martinez Fernandez, L. Martini, J. Ramirez-Rico, F. Salamanna, M. Sandri, S. Sprio, M. Marcacci, Tissue Engineering Part A, 2014, 20, 763.
N. Baldini, M. De Sanctis, M. Ferrari, Dental Materials, 2011, 27, 61.
D. McConnell, “Carbonate Apatites”, pp. 39-47 in Apatite: Its crystal chemistry, mineralogy, utilization, and geologic and biologic occurrences, Springer-Verlag, New York, 1973.
T. Sakae, H. Nakada, J.P. LeGeros, Journal of Hard Tissue Biology, 2015, 24 111.
K. Tomoda, H. Ariizumi, T. Nakaji, L. Makino, Colloids and Surfaces B, 2010, 76 226.
M. Cziko, E.S. Bogya, C. Paizs, G. Katona, Z. Konya, A. Kukovecz, R. Barabas, Materials Chemistry and Physics, 2016, 180, 314.
C.F. Dai, S.P. Li, X.D. Li, Colloids and Surfaces B, 2015, 136, 262.
R. Barabas, M. Cziko, I. Dekany, L. Bizo, E.S. Bogya, Chemical Papers, 2013, 67, 1414.
R. Barabas, G. Katona, E.S. Bogya, M.V. Diudea, A. Szentes, B. Zsirka, J. Kovacs, L. Kekedy-Nagy, M., Cziko, Ceramics International, 2015, 41, 12717.
S. Dadras, V.M. Farahani, Physica B, 2015, 477, 94.
D. Lahiri, S. Ghosh, A. Agarwal, Materials Science and Engineering C, 2012, 32, 1727.
A. Abrishamchian, T. Hooshmand, M. Mohammadi, F. Najafi, Materials Science and Engineering C, 2013, 33, 2002.
D. Gopi, E. Shinyjoy, M. Sekar, M. Surendiran, L. Kavitha, T.S. Sampath Kumar, Corrosion Science, 2013, 73, 321.
I.K. Yoon, J.Y. Hwang, J.W. Seo, W.C. Jang, H.W. Kim, U.S. Sing, Carbon, 2014, 77, 379.
S.D. Bergese, K. Candiotti, S.S. Ayad, S. Soghomonyan, T.J. Gan, Clinical Therapeutics, 2015, 37, 360.
T.J. Gan, K. Candiotti, A. Turan, A. Buvanendran, B.K. Philip, E.R. Viscusi, S. Soghomonyan, Clinical Therapeutics, 2015, 37, 368.
M. Oner, E. Yetiz, E. Ay, U. Uysal, Ceramics International, 2011, 37, 2117.
D. Musmarra, M. Prisciandaro, M. Capocelli, D. Karatza, P., Iovino, S. Canzano, A. Lancia, Ultrasonics Sonochemistry, 2016, 29, 76.
B.G.X. Zhang, D.E. Myers, G.G. Wallace, M. Brandt, P.F.M. Choong, International Journal of Molecular Sciences, 2014, 15, 11878.
P. Diaz-Rodriguez, A. Perez-Estevez, R. Seoane, P. Gonzalez, J. Serra, M. Landin, ISRN Pharmaceutics, 2013, Article ID 104529, 8 pages.
E. Brown, "Who Needs the Internet of Things?", Linux.com, Retrieved 23 October 2016.
S.T. Ho, D.W. Hutmacher, Biomaterials, 2006, 27, 1362.
P. Spulveda, F.S. Ortega, M.D.M. Innocentini, V.C. Pandolfelli, Journal of the American Ceramic Society, 2000, 83, 3021.
A. Duconseille, T. Astruc, N. Quintana, F. Meersman, V. Sante-Lhoutellier, Food Hydrocolloids, 2015, 43, 360.
Z.C. Chen, X.L. Zhang, K. Zhou, H. Cai, C.Q. Liu, Advances in Applied Ceramics, 2015,114, 183.
P. Sooksaen, N. Pengusawan, S. Karawatthanaworrakul, S. Pianpraditkul, Advances in Condensed Matter Physics, 2015, Article ID 158582, 9 pages.
G. Neupane, R.J. Donahoe, Y. Arai, Chemical Geology, 2014, 368, 31.
A. Szentes, G. Horvath, C., Varga, G. Harrach, Hungarian Journal of Industry and Chemistry, 2011, 39, 113.
E. Chevalier, M. Viana, S. Cazalbou, L. Makein, J. Dubois, D. Chulia, Acta Biomaterialia, 2010, 6, 266.
T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, Journal of Biomedical Materials Research, 1990, 24, 721.
C. Moisa, L.G. Vicas, M. Ganea, E.A. Levei, O. Cadar, C. Berce, Farmacia, 2018, 66, 176.
S.T. Ho, D.W. Hutmacher, Biomaterials, 2006, 27, 1362.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.