SYNTHESIS OF N-DOPED CARBON MATERIALS WITH ULTRA-MICROPOROUS BY ACTIVATIVE RUBIDIUM CHLORIDE

Authors

  • Baocheng WU Key Laboratory of Applied Physical Chemistry of Qinghai Province, Qinghai Minzu University, Xining 810007; China School of Chemical Engineering and Automation, Qinghai Vocational and Technical University, Xining 810016, China.
  • Ye XING Key Laboratory of Applied Physical Chemistry of Qinghai Province, Qinghai Minzu University, Xining 810007
  • Yande CAO Key Laboratory of Applied Physical Chemistry of Qinghai Province, Qinghai Minzu University, Xining 810007; Asia Silicon (Qinghai) Co., Ltd, Xining 810007, China.
  • Haichao LI Key Laboratory of Applied Physical Chemistry of Qinghai Province, Qinghai Minzu University, Xining 810007. lihaichao@vip.163.com

DOI:

https://doi.org/10.24193/subbchem.2025.1.03

Keywords:

Ultra-microporous, Activated carbon, Hydrogen adsorption storage, Chenopodium quinoa Willd, rubidium chloride

Abstract

Activated carbon from quinoa straw, an agricultural waste, was prepared by chemical activation using a novel activator, rubidium chloride. The effects of time, temperature and amount of activator on the yield and adsorption properties of quinoa straw activated carbon were also investigated. The results showed that the optimal activation process for quinoa straw activated carbon was: activation temperature 700 ℃, activation time 2 h, and RbCl-QS ratio 1:1. The quinoa straw activated carbon prepared under this process had a yield of 27.18%, an iodine adsorption value of 828.11 mg g-1, a total pore volume of 0.303 cm3 g-1, a major pore size of 0.58 nm, and a specific surface area of 635.59 m2 g-1. At room temperature and pressure, the H2 desorption can reach 3.92 cm3 g-1. quinoa straw activated carbon prepared using RbCl as activator has excellent adsorption and hydrogen storage properties.

References

1. J. W. Ren; N. M. Musyoka; H. W. Langmi; M. Mathe; S. J. Liao; Int. J. Hydrog. Energy, 2017, 42, 289-311.

2. M. Ayvaz; S. İ. Ayvaz; İ. Aydin; Int. J. Hydrog. Energy, 2018, 43, 20271-20283.

3. C. G. Michael; S. K. Eustathios; S. M. Sofoklis; K. Konstantinos; N. P. Efstratios; Comput. Chem. Eng., 2009, 33, 1077-1090.

4. A. Kumar; P. Muthukumar; P. Sharma; E. A. Kumar; Sustain. Energy Technol. Assess., 2022, 52, 102204.

5. P. C. Rao; Y. S. Kim; H. Kim; Y. H. Son; Y. Y. Choi; K. Na; M. Y. Yoon; ACS Sustainable Chem. Eng., 2023, 11, 12656-12666.

6. Y. M. Tang; Y. Z. Liu; Y. H. Zhang; Y. N. Cao; P. P. Song; L. M. Hou; L. X. Peng; Food Sci. Nutr., 2024, 1-13.

7. N. Wang; F. X. Wang; C. Shock; F. B. Fritschi; L. Gao; Z. J. Huang; J. Y. Zhao; Agric. For Meteorol., 2022, 323, 109084.

8. X. L. Zhao; F. Wang; Y. Fang; D. W. Zhou; S. P. Wang; D. Q. Wu; L. X. Wang; R. Z. Zhong; BioResources, 2020, 312, 123512.

9. D. Abril; V. Ferrer; G. Y. Mirabal; B. G. Cabrera; C Segura.; A. Marican; A. Pereira; E. F. Durán-Lara; O. Valdés; Materials, 2022, 15, 4898.

10. C. L. Zhang; H. C. Li; Z. Z. Lin; B. X. Du; X. P. Zhang; Carbon Trends, 2024, 14, 100322.

11. R. S. DeFever; H. M. Wang; Y. Zhang; E. J. Maginn; J. Chem. Phys., 2020, 153, 011101.

12. E. Çetingürbüz; A. Turkyilmaz; Ind. Crops Prod., 2023, 203, 117171.

13. S. Hao; Q. Zhang; Y. Shi; Q. Guo; P. Li; J. Huang; Biomass Conv. Bioref., 2024, 14, 9581–9594.

14. S. Lee; M. E. Lee; M. Y. Song; S. Y. Cho; Y. S. Yun; H. Jin; Carbon Letters, 2016, 20, 32-38.

15. D. Guo; Y. Fu; F. Bu; H. Liang; L. Duan; Z. Zhao; C. Wang; A. M. ElToni; W. Li; D. Zhao; Small Methods, 2021, 5, 2001137.

16. C. Zhou; S. Geng; X. W. Xu; T. H. Wang; L. Q. Zhang; X. J. Tian; F. Yang; H. T. Yang; Y. F. Li; Carbon, 2016, 108 234-241.

17. Y. Gao; Q. Yue; B. Gao; Y. Sun; W. Wang; Q. Li; Y. Wang; Chem. Eng. J., 2013, 217 345-353.

18. B. X. Du; H. C. Li; C. L. Zhang; Q. S. Ji; Heliyon, 2024, 10, e27585.

19. W. Zhao; V. Fierro; N. Fera'ndez-huerta; M. T. Izquierdo; A. Celzard; Int. J. Hydrog. Energy, 2012, 37, 14278-14284.

20. S. Schaefer; V. Fierro; M. T. Izquierdo; A. Celzard, Int. J. Hydrog. Energy, 2016, 41, 12146-12156.

21. B. K. Kızılduman; Y. Turhan; M. Doğan; Adv. Powder Technol., 2021, 32, 4222-4234.

22. T. T. Qin; M. K. Song; K. K. Jiang; J. W. Zhou; W. Zhuang; Y. Chen; D. Liu; X. C. Chen; H. J. Ying; J. L. Wu; RSC Adv., 2017, 7, 37112-37121.

23. H. S. Jang; J. Y. Mun; W. G. Hong; S. M. Lee; J. W. Jeon; C. Y. Lee; H. J. Kim; B. H. Kim; Int. J. Hydrog. Energy, 2020, 45, 10516-10522.

Downloads

Published

2025-03-20

How to Cite

WU, B., XING, Y., CAO, Y., & LI, H. (2025). SYNTHESIS OF N-DOPED CARBON MATERIALS WITH ULTRA-MICROPOROUS BY ACTIVATIVE RUBIDIUM CHLORIDE. Studia Universitatis Babeș-Bolyai Chemia, 70(1), 35–46. https://doi.org/10.24193/subbchem.2025.1.03

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.