INFLUENCE OF THE COMPOSITION EVOLUTION OF WASTE COMPUTER MOTHERBOARDS ON THEIR RECYCLING STRATEGY

Authors

  • Sorin-Aurel DORNEANU Faculty of Chemistry and Chemical Engineering; Interdisciplinary Research Institute on Bio Nano Sciences; Research Center of Electrochemistry and Nonconventional Materials, Babes-Bolyai University, Cluj-Napoca, Romania. Email: dorneanu@chem.ubbcluj.ro. https://orcid.org/0000-0002-2690-6383
  • Alexandru-Andrei AVRAM Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania. Corresponding author: pilea@chem.ubbcluj.ro. https://orcid.org/0000-0002-7140-8041
  • Alexandru-Horațiu MĂRINCAŞ Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania. Corresponding author: pilea@chem.ubbcluj.ro. https://orcid.org/0000-0003-2301-7721
  • Nicoleta COTOLAN Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Corresponding author: jdchelaru@chem.ubbcluj.ro. https://orcid.org/0000-0002-2283-7931
  • Tiberiu FRENŢIU Research Center for Advanced Chemical Analysis, Instrumentation and Chemometrics-Analytica, Babeş-Bolyai University Cluj-Napoca, Romania. Email: ftibi@chem.ubbcluj.ro. https://orcid.org/0000-0001-6670-3380
  • Petru ILEA Interdisciplinary Research Institute on Bio Nano Sciences, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: pilea@chem.ubbcluj.ro. https://orcid.org/0000-0002-4334-2735

DOI:

https://doi.org/10.24193/subbchem.2018.4.12

Keywords:

Waste printed circuit boards, metals recovery, composition evolution, recycling strategy, eco-friendly process

Abstract

Even if the mobile devices gain more popularity comparing to the desktop personal computers (DPCs), the last ones are still intensively used where highly computing or storage capabilities are required. Because the replacing rate of DPCs are very high, the amount of obsolete equipments is also huge, reclaiming adequate efficient and ecological recycling techniques. In this field, the main efforts are focused on the DPCs motherboards (DPCMBs) recycling because, even if they represent only 5 to 10% from the DPCs weight, they concentrate up to 80% from the recoverable value. By accounting the DPCMBs' traditional and incipient recycling technologies, it is obvious that none of them can solve alone the problem of this waste type. In this context, during the present work, the composition evolution of 10 DPCMBs released between 1998 and 2008 was evaluated and analyzed, the obtained results being used to design a feasible and eco-friendly combined strategy for integral DPCMBs recycling.

References

https://www.statista.com/statistics/272595/global-shipments-forecast-for-tablets-laptops-and-desktop-pcs/, accessed 21.11.2018.

A. Puca, M. Carrano, G. Liu, D. Musella, M. Ripa, S. Viglia, S. Ulgiati, Resources, Conservation and Recycling, 2017,116, 124.

S.S. Suresh, S. Bonda, S. Mohanty S.K. Nayak, Process Safety and Environmental Protection, 2018, 116, 477.

G. Chauhan, P.R. Jadhao, K.K. Pant, K.D.P. Nigam, Journal of Environmental Chemical Engineering, 2018, 6(1), 1288.

C.A. Kohl, L. P. Gomes, Journal of Cleaner Production, 2018, 184, 1041.

Z. Wu, W. Yuan, J.Li, X. Wang, L. Liu, J. Wang, Frontiers of Environmental Science and Engineering, 2017, 11(5):8, 1.

M. Kaya, “Recovery of Metals and Nonmetals from Waste Printed Circuit Boards (PCBs) by Physical Recycling Techniques” in Energy Technology 2017, L. Zhang (Ed.), The Minerals, Metals & Materials Society, 2017, 433–451.

S. Pinho, M. Ferreira, M. F. Almeida, Resources, Conservation and Recycling, 2018, 132, 71.

A. Barnwal, S. Vishvakarma, N. Dhawan, Materials Today: Proceedings, 2018, 5(9), 17046.

H. Li, J. Eksteen, E. Oraby, Resources, Conservation and Recycling, 2018, 139, 122.

B. Mizero, T. Musongo, E.R. Rene, F. Battes P.N.L. Lens, Process Safety and Environmental Protection, 2018, 120, 14.

H. Wang, S. Zhang, B. Li, D. Pan, Y. Wu, T. Zuo, Resources, Conservation and Recycling, 2017, 126, 209.

M. Ghodrat, M.A. Rhamdhani, A. Khaliq, G. Brooks, B. Samali, Journal of Material Cycles and Waste Management, 2018, 20(1), 386.

A. Gurgul, W. Szczepaniak M. Zabłocka-Malicka, Science of the Total Environment, 2018, 624, 1119.

A. Priya, S. Hait, Environmental Science and Pollution Research, 2017, 24(8), 6989.

E. Ventura, A. Futuro, S.C. Pinho, M.F. Almeida, J.M. Dias, Journal of Environmental Management, 2018, 223, 297.

M. Kaya, Waste Management, 2016, 57, 64.

A. Işıldar, E.R. Rene, E.D. van Hullebusch, P.N.L. Lens, Resources, Conservation and Recycling, 2018, 135, 296.

C. Ning, C.S.K. Lin, D.C. W. Hui, G. McKay, Topics in Current Chemistry, 2017, 375(2), 1.

G. Cecere, A. Martinelli, Research Policy, 2017, vol. 46(5), 925.

L. Rocchetti, A. Amato, F. Beolchini, Journal of Cleaner Production, 2018,178, 814.

G. Zhang, Y. He, Y. Feng, T. Zhang, H. Wang, X. Zhu, Separation and Purification Technology, 2018, 207, 321.

R. Saini, R. Khanna, R.K. Dutta, R. Cayumil, M. Ikram-Ul-Haq, V. Agarwala, G. Ellamparuthy, K. Jayasankar, P.S. Mukherjee, V. Sahajwalla, Waste Management, 2017, 64, 182.

S. Fogarasi, F. Imre-Lucaci, Á. Imre-Lucaci, and P. Ilea, Journal of Hazardous Materials, 2014, 273, 215.

L.A. Diaz, T.E. Lister, J.A. Parkman, G.G. Clark, Journal of Cleaner Production, 2016, 125, 236.

S.A. Dorneanu, Studia Universitatis Babes-Bolyai Chemia, 2017, 62(3), 177.

D. Yang D. Yang, Y. Chu, J. Wang, M. Chen, J. Shu, F. Xiu, Z. Xu, S. Sun, S. Chen, Separation and Purification Technology, 2018, 205, 302.

E. Haccuria, P. Ning, H. Cao, P. Venkatesan, W. Jin, Y. Yang, Z. Sun, Journal of Cleaner Production, 2017, 152, 150.

L. A. Diaz, T. E. Lister, Waste Management, 2018, 74, 384.

S. Fogarasi, F. Imre-Lucaci, A. Egedy, Á. Imre-Lucaci, P. Ilea, Waste Management, 2015, 40, 136.

K. Scott, Renewable and Sustainable Energy Reviews, 2018, 81, 1406.

Y. Zhang, M. Chen, Q. Tan, B. Wang, S. Chen, Hydrometallurgy, 2018, 175, 150.

S.M. Abdelbasir, C.T. El-Sheltawy, D.M. Abdo, Journal of Sustainable Metallurgy, 2018, 4(2), 295.

J.R. Peeters, P. Vanegas, W. Dewulf, J.R. Duflou, Journal of Cleaner Production, 2017, 140, 1182.

A. Cesaro, A. Marra, V. Belgiorno M. Guida, Journal of Cleaner Production, 2017, 142, 2656.

R.G. Charles, P. Douglas, I.L. Hallin, I. Matthews, G. Liversage, Waste Management, 2017, 60, 505.

https://ec.europa.eu/eurostat/statistics-explained/index.php/Electricity_price_statistics, accessed 21.11.2018.

http://www.nanotech-elektronik.pl/index.php/en/42-english/support, accessed 21.11.2018.

R.A. Mesquita, R.A.F. Silva, D. Majuste, Process Safety and Environmental Protection, 2018, 120, 107.

https://www.lme.com/Metals, accessed 21.11.2018.

F. Tesfaye, D. Lindberg, J. Hamuyuni, P. Taskinen, L. Hupaa. Minerals Engineering, 2017, 111, 209.

B. Kopacek, IFAC-PapersOnLine, 2016, 49(29), 190.

J. Li, M. Barwood, S. Rahimifard, Resources Conservation and Recycling, 2019, 140, 158.

H.R. Verma, K.K. Singh, T.R. Mankhand, Waste Management, 2017, 65, 139.

S.P. Gundupalli, S. Hait, A. Thakur, Waste Management, 2017, 60, 56.

R. Gao, Z. Xu, Journal of Hazardous Materials, 2019, 364, 1.

Y. Liu, K, Li, J. Guo, Z. Xu, Journal of Cleaner Production, 2018, 197, 1488.

Downloads

Published

2018-12-31

How to Cite

DORNEANU, S.-A. ., AVRAM, A.-A. ., MĂRINCAŞ, A.-H. ., COTOLAN, N. ., FRENŢIU, T. ., & ILEA, P. . (2018). INFLUENCE OF THE COMPOSITION EVOLUTION OF WASTE COMPUTER MOTHERBOARDS ON THEIR RECYCLING STRATEGY. Studia Universitatis Babeș-Bolyai Chemia, 63(4), 147–158. https://doi.org/10.24193/subbchem.2018.4.12

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 27 28 29 30 31 32 33 34 35 36 > >> 

You may also start an advanced similarity search for this article.