THE EFFECT OF HIGH PRESSURE PROCESSING ON MAJOR STRUCTURAL PROTEINS OF RAINBOW TROUT FISH FILLETS

Authors

  • Ana-Andreea CIOCA Department of Animal Production and Food Safety, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania. Email: anaandreeacioca@yahoo.com. https://orcid.org/0000-0002-1152-4569
  • Sorin Daniel DAN Department of Animal Production and Food Safety, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania. Email: sorindan@usamvcluj.ro. https://orcid.org/0000-0003-2832-259X
  • Vlӑduța Mӑrioara LUPӐU Department of Animal Production and Food Safety, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania. Corresponding author: anaandreeacioca@yahoo.com.
  • Liora Mihaela COLOBATIU Department of Medical Devices, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania. Corresponding author: anaandreeacioca@yahoo.com. https://orcid.org/0000-0003-1577-4861
  • Marian MIHAIU Department of Animal Production and Food Safety, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania. Email: mihaiu.marian@usamvcluj.ro.

DOI:

https://doi.org/10.24193/subbchem.2018.4.10

Keywords:

high-pressure processing, microbial load, protein denaturation, rainbow trout fillets

Abstract

Fresh rainbow trout fillets are very perishable food products. Therefore, they cannot be stored at refrigeration temperatures for a long period of time. High pressure processing (HPP) can improve the quality of the fillets through microbial load control. As a result of this, the shelf-life of the product is extended. However, some physicochemical changes can appear. The aim of this study was to assess the degree of protein denaturation in rainbow trout fillets treated with various levels of high pressure. The results showed that protein denaturation is definitely higher for the fillets treated with higher pressure levels, in the range of 400 MPa/3 min – 600 MPa/6 min and lower for the fillets treated with lower pressure levels, in the range of 100 MPa/3 min – 200 MPa/6 min. The use of lower pressure levels is beneficial to the structural quality preservation of the fillets, but less effective concerning the microbial inactivation. Maintaining a good structural and nutritional quality of the product is not very useful in this case, because it cannot be combined with other great advantages offered by the HPP tools, namely microbial control and spoilage decline. Therefore, further studies should focus on readjusting (e. g. minimizing) the holding time and other possible parameters, without lowering the high levels of pressure.

References

C. Arnaud, M. de Lamballerie, L. Pottier, “Effect of High Pressure Processing on Fish Protein Oxidation and Denaturation”, 5th Trans-Atlantic Fisheries Technology Conference, Nantes, 2015.

C. Balny, P. Masson, Food Reviews International, 1993, 9(4), 611.

Tomas B., Middendorf D., Toepfl S., Heinz V., “Structural Changes in Foods Caused by High-Pressure Processing”, Springer Science+Business Media, New York, 2016, chapter 23.

Gökoğlu N., Yerlikaya P., “Seafood chilling, refrigeration and freezing : science and technology” John Wiley & Sons, Chichester, 2015.

R. J. Hastings, G. W. Rodger, R. Park, A. D. Matthews, E. M. Anderson, Journal of Food Science, 1985, 50(2), 503.

Heinz V., Buckow R., Jurnal fur Verbraucherschutz Lebensmittelsicherheit, 2010, 5(1), 73.

S. Iso, Mizuno H., Ogawa H., Mochizuki Y., Iso N., Fisheries Science, 1994, 60(1), 127.

K. Lovedeep, T. Astruc, A. Vénien, O. Loison, J. Cui, M. Irastorza, M. Bolanda, Food & Function, 2016, 187(5), 2389.

W.-C. Ko, C.-L. Jao, J.-S.. Hwang, K.-C. Hsu, Journal of Food Engineering, 2006, 77, 1007.

L. E. Kramer, “High Pressure Processing of Fish and Protein Denaturation”, Master thesis in Biological Chemistry, Stavanger, 2013.

T. C. Lanier, Advances in Experimental Medicine and Biology, 1998, 434, 45.

M., A. Mazorra-Manzano, J., C. Ramírez-Suárez, J.,M. Moreno-Hernández, R. Pacheco-Aguilar, “Seafood Proteins”, Elsevier Woodhead Publishing Series in Food Science, Technology and Nutrition, Amsterdam, 2018, 445.

Z. Pieniak, W. Verbeke, K. Brunso, J. Scholderer, S. O. Olsenc, Acta Alimentaria, 2009, 38(2), 179.

R. Schubring, Journal of Thermal Analysis and Calorimetry, 2005, 82, 229.

R. Schubring, Journal of Food Processing and Preservation, 2008, 32, 190.

Dagbjørn S., Van der Plancken I., Van Loey A., Hendrick M. E., Journal of Food Engineering, 2008, 85, 51.

C. G. Sotelo, C. Piñeiro, R.I. Pérez-Martín, Z Lebensm Unters Forsch, 1995, 200(1), 14.

P. Soumia, C. Sandeep, J. J. Jubbin, Indian Journal of Endocrinology and Metabolism, 2013, 17(3).

Teixeira B., Fidalgo L., Mendes R., Costa G., Cordeiro C., Marques A., Saraiva J. A., Nunes M. L., Journal of Agricultural and Food Chemistry, 2013, 61, 2851.

M. Trebar, “Cold Chain and Shelf Life Prediction of Refrigerated Fish – From Farm to Table”, Springer Cham, New York, 2018.

L. Timberg, R. Kuldjärv, K. Koppel, T., Paalme, Agronomy Research, 2011, 9 (Special Issue II), 495.

B. Truong, R. Buckow, C. E. Stathopoulos, M. H. Nguyen, Food Engineering Reviews, 2015, 7(2), 109.

M. Uddin, Ahmad M. U., Jahan P., Sanguandeekul R. Asian Journal of Chemistry, 2001, 13(3), 965.

Downloads

Published

2018-12-31

How to Cite

CIOCA, A.-A. ., DAN, S. D. ., LUPӐU V. M. ., COLOBATIU, L. M. ., & MIHAIU, M. . (2018). THE EFFECT OF HIGH PRESSURE PROCESSING ON MAJOR STRUCTURAL PROTEINS OF RAINBOW TROUT FISH FILLETS. Studia Universitatis Babeș-Bolyai Chemia, 63(4), 129–136. https://doi.org/10.24193/subbchem.2018.4.10

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.